title: “Lata knowledge-route-Class10-Math1-2 Merged.Pdf(1)” type: “reveal” weight: 1

CO-ORDINATE GEOMETRY

CO-ORDINATE GEOMETRY

7.1 RECTANGULAR CO-ORDINATES :

Take two perpendicular lines $\mathbf{X}^{\prime} \mathbf{O X}$ and $\mathbf{Y}^{\prime} OY$ intersecting at the point $\mathbf{O}$. $\mathbf{X}^{\prime} \mathbf{O X}$ and $\mathbf{Y}^{\prime} OY$ are called the co-ordinate axes. $\mathbf{X}^{\prime} \mathbf{O x}$ is called the $\mathbf{X}$-axis, $\mathbf{Y}^{\prime} \mathbf{O Y}$ is called the $\mathbf{Y}$-axis and $\mathbf{O}$ is called the origin. Lines $\mathbf{X}^{\prime} OX$ and $\mathbf{Y}^{\prime} OY$ are sometimes also called rectangular axes.

CO-ORDINATE GEOMETRY

7.1 (a) Co-ordinates of a Point :

Let $\mathbf{P}$ be any point as shown in figure. Draw PL and PM perpendiculars on $\mathbf{Y}$-axis and $\mathbf{X}$-axis, respectively. The length $\mathbf{L P}$ (or $\mathbf{O M}$ ) is called the $\mathbf{x}$ - coordinate of the abscissa of point $\mathbf{P}$ and MP $i$ called the $\mathbf{y}$ - coordinate or the ordinate of point $\mathbf{P}$. A point whose abscissa is $\mathbf{x}$ and ordinate is $\mathbf{y}$ named as the point $(\mathbf{x}, \mathbf{y})$ or $\mathbf{P}(x, y)$.

CO-ORDINATE GEOMETRY

CO-ORDINATE GEOMETRY

The two lines $\mathbf{X}^{\prime} \mathbf{O X}$ and $\mathbf{Y}^{\prime} \mathbf{O Y}$ divide the plane into four parts called quadrants. $XOY, YOX’$ $X^{\prime} O Y^{\prime}$ and $Y^{\prime} O X$ are, respectively, called the first, second third and fourth quadrants. The following table shows the signs of the coordinates of pins situated in different quadrants :

Quadrant X-coodrinate Y-coordinate Point
First quadrant + + $(+,+)$
Second quadrant - + $(-,+)$
Third quadrant - - $(-,-)$
Fourth quadrant + - $(+,-)$

$$$$

CO-ORDINATE GEOMETRY

REMAKS

(i) Abscissa is the perpendicular distance of a point from $\mathbf{y}$-axis (i.e., positive to the right of $\mathbf{y}$-axis and negative to the left of $\mathbf{y}$ - axis)

(ii) Ordinate is positive above $\mathbf{x}$ - axis and negative below $\mathbf{x}$-axis.

(iii) Abscissa of any point on $y$-axis is zero.

(iv) Ordinate of any point of $\mathbf{x}$-axis is zero.

(v) Co-ordinates of the origin are $(0,0)$

CO-ORDINATE GEOMETRY

7.2 DISTACE BETWEEN TWO POINTS :

Let two points be $\mathbf{P}(\mathbf{x} _1, \mathbf{y} _1)$ and $\mathbf{Q}(\mathbf{x} _2, \mathbf{y} _2)$

Take two mutually perpendicular lines as the coordinate axis with $\mathbf{O}$ as origin. Mark the points $\mathbf{P}(\mathbf{x} _1, \mathbf{y} _1)$ and $\mathbf{Q}(\mathbf{x} _2, \mathbf{y} _2)$. Draw lines $\mathbf{P A}$,

$\mathbf{Q B}$ perpendicular to $\mathbf{X}$-axis from the points $\mathbf{P}$ and $\mathbf{Q}$, which meet the $\mathbf{X}$-axis in points $A$ and $B$, respectively.

CO-ORDINATE GEOMETRY

Draw lines PC and QD perpendicular to Y-axis, which meet the $\mathbf{Y}$ axis in $C$ and $D$, respectively. Produce $C P$ to meet $B Q$ in R. Now

$OA=$ abscissa of $P=x_1$

Similarly, $OB=x_2, OC=y_1$ and $OD=y_2$

Therefore, we have $\quad PR=AB=OB-OA=x_2-x_1$

Similarly, $QR=QB-RB=QB-PA=y_2-y_1$

Now, using Pythagoras Theorem, in right angled triangle

CO-ORDINATE GEOMETRY

$PRQ$, we have $\quad PQ^{2}=Pr^{2}+RQ^{2}$

or $\quad PQ^{2}=(x_2-x_1)^{2}+(y_2-y_1)^{2}$

CO-ORDINATE GEOMETRY

Since the distance or length of the line-segment $PQ$ is always non-negative, on taking the positive square root, we get the distance as

$PQ=\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$

This result is known as distance formula.

CO-ORDINATE GEOMETRY

Corollary : The distance of a point $\mathbf{P}(\mathbf{x} _1, \mathbf{y} _1)$ from the origin $(\mathbf{0}, \mathbf{0})$ is given by

$OP=\sqrt{x_1^{2}+y_1^{2}}$

CO-ORDINATE GEOMETRY

Some useful points :

1. In questions relating to geometrical figures, take the given vertices in the given order and proceed as indicated.

(i) For an isosceles triangle - We have to prove that at least two sides are equal.

(ii) For an equilateral triangle - We have to prove that three sides are equal.

(iii) For a right -angled triangle - We have to prove that the sum of the squares of two sides is equal to the square of the third side.

(iv) for a square - We have to prove that the four sides are equal, two diagonals are equal.

(v) For a rhombus - We have to prove that four sides are equal (and there is no need to establish that two diagonals are unequal as the square is also a rhombus).

(vi) For a rectangle - We have to prove that the opposite sides are equal and two diagonals are equal.

(vii) For a Parallelogram - We have to prove that the opposite sides are equal (and there is no need to establish that two diagonals are unequal sat the rectangle is also a parallelogram).

CO-ORDINATE GEOMETRY

2. for three points to be collinear - We have to prove that the sum of the distances between two pairs of points is equal to the third pair of points.

CO-ORDINATE GEOMETRY

Ex. 1 Find the distance between the points $(8,-2)$ and $(3,-6)$.

CO-ORDINATE GEOMETRY

Sol. Let the points $(8,-2)$ and $(3,-6)$ be denoted by $P$ and $Q$, respectively.

Then, by distance formula, we obtain the distance $P Q$ as

$PQ=\sqrt{(3-8)^{2}+(-6+2)^{2}} \quad=\sqrt{(-5)^{2}+(-4)^{2}}=\sqrt{41}$ unit

CO-ORDINATE GEOMETRY

Ex. 2 Prove that the points $(1,-1),(-\frac{1}{2}, \frac{1}{2})$ and $(1,2)$ are the vertices of an isosceles triangle.

CO-ORDINATE GEOMETRY

Sol. Let the point $(1,-1),(-\frac{1}{2}, \frac{1}{2})$ and $(1,2)$ be denoted by $P, Q$ and $R$, respectively. Now

$PQ=\sqrt{(-\frac{1}{2}-)^{2}+(\frac{1}{2}+1)^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2} \sqrt{2}$

$QR=\sqrt{(1+\frac{1}{2})^{2}+(2-\frac{1}{2})^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2} \sqrt{2}$

$PR=\sqrt{(1-1)^{2}+(2+1)^{2}}=\sqrt{9}=3$

From the above, we see that $PQ=QR \quad \therefore \quad$ The triangle is isosceles.

CO-ORDINATE GEOMETRY

Ex. 3 Using distance formula, show that the points $(-3,2),(1,-2)$ and $(9,-10)$ are collinear.

CO-ORDINATE GEOMETRY

Sol. Let the given points $(-3,2),(1,-2)$ and $(9,-10)$ be denoted by A, B and C, respectively. Points A, B and C will be collinear, if the sum of the lengths of two line-segments is equal to the third.

Now, $\quad A B=\sqrt{(1+3)^{2}+(-2-2)^{2}}=\sqrt{16+16}=4 \sqrt{2}$

$BC=\sqrt{(9-1)^{2}+(-10+2)^{2}}=\sqrt{64+64}=8 \sqrt{2}$

$AC=\sqrt{(9+3)^{2}+(-10-2)^{2}}=\sqrt{144+144}=12 \sqrt{2}$

Since, $A B+B C=4 \sqrt{2}+8 \sqrt{2}=12 \sqrt{2}=A C$, the, points $A, B$ and $C$ are collinear.

CO-ORDINATE GEOMETRY

Ex. 4 Find a point on the $X$-axis which is equidistant from the points $(5,4)$ and $(-2,3)$.

CO-ORDINATE GEOMETRY

Sol. Since the required point (say $P$ ) is on the $X$-axis, its ordinate will be zero. Let the abscissa of the point be $x$.

Therefore, coordinates of the point $P$ are $(x, 0)$.

Let $A$ and $B$ denote the points $(5,4)$ and $(-2,3)$, respectively.

Since we are given that $AP=BP$, we have $\quad AP^{2}=BP^{2}$

i.e., $(x-5)^{2}+(0-4)^{2}=(x+2)^{2}+(0-3)^{2}$

or $\quad x^{2}+25-10 x+16=x^{2}+4+4 x+9 \quad$ or $\quad-14 x=-28$ or $x=2$

Thus, the required point is $(2,0)$.

CO-ORDINATE GEOMETRY

Ex. 5 The vertices of a triangle are $(-2,0),(2,3)$ and $(1,-3)$. Is the triangle equilateral, isosceles or scalene?

CO-ORDINATE GEOMETRY

Sol. Let the points $(-2,0),(2,3)$ and $(1,-3)$ be denoted by $A, B$ and $C$ respectively. Then,

$AB=\sqrt{(2+2)^{2}+(3-0)^{2}}=5 \quad BC=\sqrt{(1-2)^{2}+(-3-3)^{2}}=\sqrt{37}$

and $AC=\sqrt{(1+2)^{2}+(-0-0)^{2}}=3 \sqrt{2} \quad$ Clearly, $AB \neq BC \neq AC$.

Therefore, $ABC$ is a scalene triangle.

CO-ORDINATE GEOMETRY

Ex. 6 The length of a line-segments is 10. If one end is at $(2,-3)$ and the abscissa of the second end is 10, show that its ordinate is either 3 or -9 .

CO-ORDINATE GEOMETRY

Sol. Let $(2,-3)$ be the point $A$. let the ordinate of the second end $B$ be $y$. Then its coordinates will be $(10, y)$.

$\therefore \quad AB=\sqrt{(10-2)^{2}+(y+3)^{2}}=10$ (Given)

$\begin{matrix} \text { or } \quad 64+9+y^{2}+6 y=100 & \text { or } & y^{2}+6 y+73-100=0 \\ \text { or } \quad y^{2}+6 y-27=0 & \text { or } & (y+9)(y-3)=0 \\ \text { Therefore, } \quad y=9 & \text { or } & y=3 .\end{matrix} $

CO-ORDINATE GEOMETRY

Ex. 7 Show that the points $(-2,5),(3,-4)$ and $(7,10)$ are the vertices of a right triangle.

CO-ORDINATE GEOMETRY

Sol. Let the three points be $A(-2,5), B(3,-4)$ and $C(7,10)$.

Then $\quad AB^{2}=(3+2)^{2}+(-4-5)^{2}=106$

$BC^{2}=(7-3)^{2}+(10+4)^{2}=212$

$AC^{2}=(7+2)^{2}+(10-5)^{2}=106 \quad$ We see that $\quad BC^{2}=AB^{2} 1+AC^{2}$

$212=106+106 \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ $212=212$

$\therefore \quad \angle A=90^{\circ} \quad$ Thus, $ABC$ is a right triangle, right angled at $A$.

CO-ORDINATE GEOMETRY

Ex. 8 If the distance of $P(x, y)$ from $A(5,1)$ and $B(-1,5)$ are equal, prove that $3 x=2 y$.

CO-ORDINATE GEOMETRY

Sol. $\quad P(x, y), A(5,1)$ and $B(-1,5)$ are the given points.

$AP=BP \quad$ (Given)

$\begin{matrix} \therefore & AP^{2}=BP^{2} \quad \text { or } \quad AP^{2}-BP^{2}=0 \\ \text { or } & {(x-5)^{2}+(y-1)}^{2}-{(x+1)^{2}+(y-5)^{2}}=0 \\ \text { or } & x^{2}+25-10 x+y^{2}+1-2 y-x^{2}-1-2 x-y^{2}-25+10 y=0 \\ \text { or } & -12 x+8 y=0 \quad \text { or } \quad 3 xx=2 y .\end{matrix} $

CO-ORDINATE GEOMETRY

7.3 SECTION FORMULAE :

7.3 (a) Formula for Internal Division :

The coordinates of the pint which divided the line segment joining the pints $(x_1, y_1)$ and $(x_2, y_2)$

internally in the ratio $\mathbf{m}: \mathbf{n}$ are given by $x=\frac{mx_2+nx_1}{m+n}, y=\frac{my_2+my_1}{m+n}$

Proof :Let $O$ be the origin and let $OX$ and $OY$ be the $X$-axis and $Y$-axis respectively. Let $\mathbf{A}(x_1, y_1)$ and $\mathbf{B}(x_2, y_2)$ bet the given points. Let $(\mathbf{x}, \mathbf{y})$ be the coordinates of the point $\mathbf{p}$ which divides $\mathbf{A B}$ internally in the ratio $\mathbf{m}: \mathbf{n}$ Draw $AL \perp OX, BM \perp OX, PN \perp Ox$. Also, draw $\mathbf{A H}$ and $\mathbf{P K}$ perpendicular from $\mathbf{A}$ and $\mathbf{P}$ on $\mathbf{P N}$ and $\mathbf{B M}$ respectively. Then

CO-ORDINATE GEOMETRY

$ \begin{aligned} & OL=x_1, ON=x, OM=x_2, AL=y_1, PN=y \text { and } BM=y_2 . \\ & \therefore \quad AH=LN=ON-OL=x-x_1, PH=PH-HN \\ & =PN-AL=y-y_1, PK=NM=OM-ON=x_2-x \\ & \text { and } \quad BK=BM-MK=BM-PN=y_2-y . \end{aligned} $

alt text

CO-ORDINATE GEOMETRY

Clearly, $\triangle AHP$ and $\triangle PKB$ are similar.

$\therefore \quad \frac{AP}{BP}=\frac{AH}{PK}=\frac{PH}{BK}$

$\Rightarrow \quad \frac{m}{n}=\frac{x-x_1}{x_2-x}=\frac{y-y_1}{y_2-y}$

Now, $\frac{m}{n}=\frac{x-x_1}{x_2-x}$

$\Rightarrow \quad mx_2-mx=nx-nx_1 \quad \Rightarrow \quad mx+nx=mx_2+nx_1$

$\Rightarrow \quad x=\frac{mx_2+nx_1}{m+n}$ and $\quad \frac{m}{n}=\frac{y-y_1}{y_2-y}$

$\Rightarrow \quad my_2-my=ny-ny_1 \quad \Rightarrow \quad my+ny=my_2+ny_1$

$\Rightarrow \quad y=\frac{my_2+ny_1}{m+n}$

Thus, the coordinates of $P$ are $(\frac{mx_2+nx_1}{m+n}, \frac{\mathrm{my_{2 } + \mathrm { ny } _ { 1 }}}{m+n})$

CO-ORDINATE GEOMETRY

REMARKS

If $\mathbf{P}$ is the mid-point of $\mathbf{A B}$, then it divides $\mathbf{A B}$ in the ratio $\mathbf{1}: \mathbf{1}$, so its coordinates are $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$

CO-ORDINATE GEOMETRY

7.3 (b) Formula for External Division :

The coordinates of the points which divides the line segment joining the points $(x_1, \mathbf{y} _1)$ and $(x_2, y_2)$ externally in the ratio $\mathbf{m}: \mathbf{n}$ are given by

$ x=\frac{m x_2-n x_1}{m-n}, y=\frac{m y_2-n y_1}{m-n} $

CO-ORDINATE GEOMETRY

Ex. 9 Find the coordinates of the point which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ (i) internally (ii) externally.

CO-ORDINATE GEOMETRY

Sol. Let $P(x, y)$ be the required point.

(i) For internal division, we have

$ \begin{aligned} x & =\frac{3 x-4+2 \times 6}{3+2} \\ \text { and } \quad y & =\frac{3 \times 5+2 \times 3}{3+2} \\ \Rightarrow \quad x & =0 \text { and } y=\frac{21}{5} \end{aligned} $

So the coordinates of $P$ are $(0,21 / 5)$

CO-ORDINATE GEOMETRY

(ii) For external division, we have

$ \begin{aligned} & x=\frac{3 x-4-2 \times 6}{3-2} \\ & \text { any } \quad y=\frac{3 \times 5-2 \times 3}{3-2} \\ & \Rightarrow \quad x=-24 \text { and } y=9 \end{aligned} $

alt text

So the coordinates of $P$ are $(-24,9)$.

CO-ORDINATE GEOMETRY

Ex. 10 In which ratio does the point $(-1,-1)$ divides the line segment joining the pints $(4,4)$ and $(7,7)$ ?

CO-ORDINATE GEOMETRY

Sol. Suppose the point $C(-1,-1)$ divides the line joining the points $A(4,4)$ and $B(7,7)$ in the ratio $k: 1$ Then, the coordinates of $C$ are $(\frac{7 k+4}{k+1}, \frac{7 k+4}{k+1})$

But, we are given that the coordinates of the points $C$ are $(-1,-1) . \therefore \quad \frac{7 k+4}{k+1}=-1 \Rightarrow k=-\frac{5}{8}$

Thus, $C$ divides $AB$ externally in the ratio $5: 8$.

CO-ORDINATE GEOMETRY

Ex. 11 In what ratio does the X-axis divide the line segment joining the points $(2,-3)$ and $(5,6)$ ?

CO-ORDINATE GEOMETRY

Sol. Let the required ratio be $k: 1$. Then the coordinates of the point of division are $(\frac{5 \lambda+2}{k+1}, \frac{6 \lambda-3}{k+1})$. But, it is a point on $X$-axis on which $y$-coordinate of every point is zero.

$\therefore \quad \frac{6 \lambda-3}{k+1}=0 \quad \Rightarrow \quad k=\frac{1}{2} \quad$ Thus, the required ratio is $\frac{1}{2}: 1$ or $1: 2$.

CO-ORDINATE GEOMETRY

Ex. 12 $A(1,1)$ and $B(2,-3)$ are two points and $D$ is a point on $AB$ produced such that $AD=3 AB$. Find the coordinates of $D$.

CO-ORDINATE GEOMETRY

Sol. We have, $AD=3 AB$. Therefore, $BD=2 AB$. Thus $D$ divides $AB$ externally in the ratio $AD: BD=3: 2$ Hence, the coordinates of $D$ are

$\therefore \quad(\frac{3 \times 2-2 \times 1}{3-2}, \frac{3 x-3-2 \times 1}{3-2})$

$=(4,-11)$.

CO-ORDINATE GEOMETRY

Ex. 13 Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the pints $(1,3)$ and $(2,7)$.

CO-ORDINATE GEOMETRY

Sol. Suppose the line $3 x+y-9=0$ divides the line segment joining $A(1,3)$ and $B(2,7)$ in the ratio $k: 1$ at point C. The, the coordinates of $C$ are $(\frac{2 k+1}{k+1}, \frac{7 k+3}{k+1})$ But, $C$ lies on $3 x+y-9=0$, therefore

$3(\frac{2 k+1}{k+1})+\frac{7 k+3}{k+1}-9=0 \quad \Rightarrow \quad 6 k+3+7 k+3-9 k-9=0 \quad \Rightarrow \quad k=\frac{3}{4}$

So, the required ratio is $3: 4$ internally.

CO-ORDINATE GEOMETRY

7.4 CENTROID OF A TRIANGLE :

Prove that the coordinates of the triangle whose vertices are $(x_1, y_1),(x_2, y_2)$ and $(y_3, y_3)$ are $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$. Also, deduce that the medians of a triangle are concurrent.

CO-ORDINATE GEOMETRY

Proof :

Let $\mathbf{A}(\mathbf{x} _1, \mathbf{y} _1, \mathbf{B}(x_2, y_2).$ and $\mathbf{C}(x_3, y_3)$ be the vertices of $\triangle ABC$ whose medians are $AD, BE$ and $CF$ respectively. So. $D, E$ and $F$ are respectively the mid-points of $BC, CA$ and $AB$.

Coordinates of $\mathbf{D}$ are $(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2})$. Coordinates of a point dividing $A D$ in the ratio $\mathbf{2}: \mathbf{1}$ are

$(\large{\frac{1 . x_1+2(\frac{x_2+x_3}{2})}{1+2}, \frac{1 \cdot y_1+(\frac{y_2+y_3}{2})}{1+2})=(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})} $

CO-ORDINATE GEOMETRY

The coordinates of $E$ are $(\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2})$. The coordinates of a point dividing BE in the ratio $2: 1$ are $(\large{\frac{1 . x_2+\frac{2(x_1+x_3)}{2}}{1+2}, \frac{1 . y_2+\frac{2(y_1+y_3)}{2}}{1+2})=(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})}$

Similarly the coordinates of a point dividing CF in the ratio $2: 1$ are $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$

Thus, the point having coordinates $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$ is common to $AD, BE$ and $CF$ and divides them in the ratio $1: 2$.

Hence, medians of a triangle are concurrent and the coordinates of the centroid are $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$.

CO-ORDINATE GEOMETRY

7.5 AREA OF A TRIANGLE :

Let $\mathbf{A B C}$ be any triangle whose vertices are $\mathbf{A}(\mathbf{x} _1, \mathbf{y} _1) \mathbf{B}(\mathbf{x} _2, \mathbf{y} _3)$. Draw BL, AM and $C N$ perpendicular from $B, A$ and $C$ respectively, to the $X$-axis. ABLM, AMNC and BLNC are all trapeziums.

Area of $\triangle ABC=$ Area of trapezium ABLM + Area of trapezium AMNC - Area of trapezium BLNC We know that, Area of trapezium $=\frac{1}{2}$ (Sum of parallel sides) $($ distance $b / w$ them)

CO-ORDINATE GEOMETRY

Therefore

Area of $\triangle ABC=\frac{1}{2}(BL+AM)(LM)+\frac{1}{2}(AM+CN) MN-\frac{1}{2}(BL+CN)(LN)$

Area of $\triangle A B C=\frac{1}{2}(y_2+y_1) x_1-x_2)+\frac{1}{2}(y_1+y_3)(x_3-x_1)-\frac{1}{2}(y_2+y_3)(x_3-x_2)$

Area of $\triangle A B C=\frac{1}{2}|[x_1(y_2-y_3)+x_2(y_3-y)+x_3(y_1-y_2)]|$

CO-ORDINATE GEOMETRY

7.5 (a) Condition for collinearity :

Three points $A(x_1, y_1) B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear if Area of $\triangle A B C=0$.

CO-ORDINATE GEOMETRY

7.6 AREA OF QUADRILATERAL :

Let the vertices of Quadrilateral $A B C D$ are $\mathbf{A}(\mathbf{x} _1, \mathbf{y} _1), \mathbf{B}(\mathbf{x} _2, \mathbf{y} _2, \mathbf{C}(\mathbf{x} _3, \mathbf{y} _3).$ and $\mathbf{D}(\mathbf{x} _4, \mathbf{y} _4)$

So, Area of quadrilateral $ABCD=$ Area of $\triangle ABC+$ Area of $\triangle ACD$

CO-ORDINATE GEOMETRY

Ex. 14 The vertices of $\triangle ABC$ are $(-2,1),(5,4)$ and $(2,-3)$ respectively. Find the area of triangle.

CO-ORDINATE GEOMETRY

Sol. $A(-2,1), B(-2,1)$ and $C(2,-3)$ be the vertices of triangle.

So, $x_1=-2, y_1=1 ; x_2=5, y_2=4 ; x_3=2 y_3=-3$

$ \begin{aligned} \text { Area of }\Delta ABC & .=\frac{1}{2} \rvert[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)] \\ & =\frac{1}{2} \lvert[(-2)(4+3)+(5)(-3-1)+2(1-4)] \quad=\frac{1}{2}[-14+(-20)+(-6)]. \\ & =\frac{1}{2}|-40| \quad=20 \text { sq. unit. } \end{aligned} $

CO-ORDINATE GEOMETRY

Ex. 15 The area of a triangle is 5. Two of its vertices area $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the third vertex.

CO-ORDINATE GEOMETRY

Sol. Let the third vertex be $(x_3, y_3)$ area of triangle

$ \begin{aligned} & =\frac{1}{2} \rvert[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)] \\ & \text { As } \quad x_1=2 y_1=1 ; x_2=3, y_2=-2 ; \quad \text { Area of } \Delta=5 \text { sq. unit } \\ & \Rightarrow \quad 5=\frac{1}{2}|2(-2-y_3)+3(y_3-1)+x_3(1+2)| \quad \Rightarrow \quad 10=|3 x_3+y_3-7| \\ & \Rightarrow \quad 3 x_3+y_3-7= \pm 10 \end{aligned} $

Taking positive sign

$ 3 x_3+y_3-7=10 \Rightarrow \quad 3 x \therefore+y_3=17 ………….(i) $

Taking negative sign

$\Rightarrow \quad 3 x_3+y_3-7=-10 \quad \Rightarrow \quad 3 x_{\therefore}+y_3=-3 …………(ii)$

CO-ORDINATE GEOMETRY

Given that $(x_3, y_3)$ lies on $y=x+3$

So, $\quad-x \therefore+y_3=3 $

Solving eq. (i) & (iii)

$x_3=\frac{7}{2}, y_3=\frac{13}{2} $

Solving eq (ii) & (iii)

$x_3=\frac{-3}{2}, y_3=\frac{3}{2}$

So the third vertex are $(\frac{7}{2}, \frac{13}{2})$ or $(\frac{-3}{2}, \frac{3}{2})$

Ex. 16 Find the area of quadrilateral whose vertices, taken in order, are (-3, 2), B(5, 4), (7, -6) and D (-5, -4).

CO-ORDINATE GEOMETRY

Sol. Area of quadrilateral $=$ Area of $\triangle ABC+$ Area of $\triangle ACD$

So, $\quad$ Area of $\triangle ABC=\frac{1}{2}|(-3)(4+6)+5(-6-2)+7(2-4)|$

$=\frac{1}{2}|-30-40-14|$

$=\frac{1}{2}|-84|=42$ Sq. units

Area of $\triangle ACD$

$=\frac{1}{2}|-3(-6+4)+7(-4-2)+(-5)(2+6)|$

$=\frac{1}{2}|+6-42-40|=\frac{1}{2}|-76|=38$ Sq. units

So, $\quad$ Area of quadrilateral $ABCD=42+38=80$ Sq. units.

CO-ORDINATE GEOMETRY

DAILY PRACTIVELY PROBLEMS 7

OBJECTIVE DPP - 7.1

1. The points $(-a,-b),(0,0),(a, b)$ and $(a^{2}, a b)$ are

(A) Collinear

(B) Vertices of a parallelogram

(C) Vertices of a rectangle

(D) None of these

CO-ORDINATE GEOMETRY

Que. 1
Ans. A

CO-ORDINATE GEOMETRY

2. If the points $(5, 1), (1, p)$ & $(4, 2)$ are collinear then the value of $p$ will be

(A) 1

(B) 5

(C) 2

(D) -2

CO-ORDINATE GEOMETRY

Que. 2
Ans. B

CO-ORDINATE GEOMETRY

3. Length of the median from $B$ on $A C$ where $A(-1,3), B(1,-1),(5,1)$ is

(A) $\sqrt{18}$

(B) $\sqrt{10}$

(C) $2 \sqrt{3}$

(D) 4

CO-ORDINATE GEOMETRY

Que. 3
Ans. B

CO-ORDINATE GEOMETRY

4. The points $(0,-1),(-2,3),(6,7)$ and $(8,3)$ are -

(A) Collinear

(B) Vertices of a parallelogram which is not a rectangle

(C) Verticals of a rectangle, which is not a square

(D) None of these

CO-ORDINATE GEOMETRY

Que. 4
Ans. C

CO-ORDINATE GEOMETRY

5. If $(3,-4)$ and $(-6,5)$ are the extremities of the diagonal of a parallelogram and $ (-2,1)$ is third vertex, then its fourth vertex is

(A) $(-1,0)$

(B) $(0,-1)$

(C) $(-1,1)$

(D) None of these

CO-ORDINATE GEOMETRY

Que. 5
Ans. A

CO-ORDINATE GEOMETRY

6. The area of a triangle whose vertices are $(a, c+a),(a, c)$ and $(-a, c-a)$ are

(A) $a^{2}$

(B) $b^{2}$

(C) $c^{2}$

(D) $a^{2}+c^{2}$

CO-ORDINATE GEOMETRY

Que. 6
Ans. A

CO-ORDINATE GEOMETRY

7. The are of the quadrilateral’s the coordinates of whose verticals are $(1,-2),(6,2), (5,3)$ and $(3,4)$ are

(A) $\frac{9}{2}$

(B) 5

(C) $\frac{11}{2}$

(D) 11

CO-ORDINATE GEOMETRY

Que. 7
Ans. C

CO-ORDINATE GEOMETRY

SUBJECTIVE DPP - 7.2

1. Find the distance between the points :

(i) $P(-6,7)$ and $Q(-1,-5)$.

(ii) $A(at_1{ }^{2}, 2 at_1)$ and $B(at_2{ }^{2}, 2 at_2)$.

CO-ORDINATE GEOMETRY

Sol. 1. (i) $13$

(ii) $a(t_2-t_1) \sqrt{(t_2+t_1)^{2}+4}$

CO-ORDINATE GEOMETRY

2. If the point $(x, y)$ is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $b x=a y$.

CO-ORDINATE GEOMETRY

3. Find the value of $x$, if the distance between the points $(x,-1)$ and $(3,2)$ is 5 .

CO-ORDINATE GEOMETRY

Sol. 3. $\quad x=7$ or $-1$

CO-ORDINATE GEOMETRY

4. Show that the points $(a, a),(-a,-a)$ and $-\sqrt{3 a}, \sqrt{3 a})$ are the vertices of an equilateral triangle.

CO-ORDINATE GEOMETRY

5. Show that the points $(1,1),(-2,7)$ and $(3,-3)$ are collinear.

CO-ORDINATE GEOMETRY

6. Prove that $(2,-2),(-2,1)$ and $(5,2)$ are the vertices of a right angled triangle. Find the area of the triangle and the length of the hypotenuse.

CO-ORDINATE GEOMETRY

Sol. 6. $\quad \frac{25}{2}$ sq. units , $5 \sqrt{2}$

CO-ORDINATE GEOMETRY

7. If $A(-1,3), B(1,-1)$ and $C(5,1)$ are the vertices of a triangle $A B C$, find the length of the median passing through the vertex $A$.

CO-ORDINATE GEOMETRY

Sol. 7. $\quad 5$ units

CO-ORDINATE GEOMETRY

8. Show that the points $A(1,2), B(5,4), C(3,8)$ and $D(-1,6)$ are the vertices of a square.

CO-ORDINATE GEOMETRY

9. The abscissa of a point is twice its ordinate and the sum of the abscissa and the ordinate is -6 . What are the coordinates of the point?

CO-ORDINATE GEOMETRY

Sol. 9. $\quad (-4,-2)$

CO-ORDINATE GEOMETRY

10. If two vertices of triangle are $(3,7)$ an $(-1,5)$ and its centroid is $(1,3)$, find the coordinates of the third vertex.

CO-ORDINATE GEOMETRY

Sol. 10. $\quad (1,-3)$

CO-ORDINATE GEOMETRY

11. If the mid point of the line-segment joining the points $(-7,14)$ and $(K, 4)$ is $(a, b)$, where $2 a+3 b=5$, find the value of $K$.

CO-ORDINATE GEOMETRY

Sol. 11. $\quad K=-15$

CO-ORDINATE GEOMETRY

12. Prove hat the points $(a, 0),(0, b)$ and $(1,1)$ are collinear if $\frac{1}{a}+\frac{1}{b}=1$.

CO-ORDINATE GEOMETRY

13. The co-ordinates of two points $A$ & $B$ are $(3,4)$ and $(5,-2)$ respectively. Find the co-ordinate of point $P$ if $PA=PB$, the area of $\triangle APB=10$.

CO-ORDINATE GEOMETRY

Sol. 13. $\quad (7,2)$ or $(1,0)$

CO-ORDINATE GEOMETRY

14. Four points $A(6,3), B(-3,5) C(4,-2)$ and $D(x, 3 x)$ are given in such a way that $\frac{\text { Area }(\triangle D B C)}{\text { Area }(\triangle A B C)}=\frac{1}{2}$ find $x$.

CO-ORDINATE GEOMETRY

Sol. 14. $\quad \frac{11}{8},-\frac{3}{8}$

CO-ORDINATE GEOMETRY

15. Show that the points $A(2,-2), B(14,10), C(11,13)$ and $D(-1,1)$ are the vertices of a rectangle.

[CBSE-2004]

CO-ORDINATE GEOMETRY

16. Determine the ratio in which the point $(-6$, a) divides the join of $A(-3,-1)$ and $B(-8,9)$. Also find the value of a.

[CBSE 2004]

CO-ORDINATE GEOMETRY

Sol. 16. $\quad 3: 2, a=5$

CO-ORDINATE GEOMETRY

17. Find a pint on $X$-axis which is equidistant from the points $(7,6)$ and $(-3,4)$.

[CBSE - 2005]

CO-ORDINATE GEOMETRY

Sol. 17. $\quad (3,0)$

CO-ORDINATE GEOMETRY

18. The line segment joining the points $(3,-4)$ and $(1,2)$ is trisected at the pints $P$ and $Q$. if the coordinates of $P$ and $Q$ are $(p,-2)$ and $(5 / 3$,$)$ respectively. Finds the value of $p$ and $q$.

[CBSE 2005]

CO-ORDINATE GEOMETRY

Sol. 18. $\quad p=7 / 3, q=0$

CO-ORDINATE GEOMETRY

19. If $A(-2,-1), B(a, 0), C(4, b)$ and $D(1,2)$ are the verities of a parallelogram, find the values of $a$ and $b$.

[ -2006]

CO-ORDINATE GEOMETRY

Sol. 19. $\quad a=1, b=3$

CO-ORDINATE GEOMETRY

20. The coordinates of one end point of a diameter of a circle are ( $4,-1)$ and the coordinates of the centre of the circle are $(1,-3)$. Find the coordinates of the other end of the diameter.

[CBSE-2007]

CO-ORDINATE GEOMETRY

Sol. 20. $\quad (-2,-5)$

CO-ORDINATE GEOMETRY

21. The pint $R$ divides the line segment $A B$, where $A(-4,0)$ and $B(0,6)$ are such that $A R=\frac{3}{4} A B$. Find the coordinates or R.

[CBSE - 2008]

CO-ORDINATE GEOMETRY

Sol. 21. $\quad (-1, \frac{9}{2})$

CO-ORDINATE GEOMETRY

22. For what value of $k$ are the pints $(1,1),(3, k)$ and $(-1,4)$ collinear ?

[CBSE - 2008]

CO-ORDINATE GEOMETRY

Sol. 22. $\quad k=-2$

CO-ORDINATE GEOMETRY

23. Find the area of the $\triangle A B C$ with vertices $A(-5,7), B(-4,-5)$ and $C(4,5)$.

[CBSE - 2008]

CO-ORDINATE GEOMETRY

Sol. 23. $\quad 53$ sq. units

CO-ORDINATE GEOMETRY

24. If the point $P(x, y)$ is equidistant from the points $A(3,6)$ and $B(-3,4)$ prove that $3 x+y-5=0$.

[CBSE - 2008]

CO-ORDINATE GEOMETRY

25. If $A(4-8), B(3,6)$ and $C(5,-4)$ are the vertices of a $\triangle A B C, D$ is the mid-point of $B C$ and is $P$ is point on $A D$ joined such that $\frac{A P}{P D}=2$ find the coordinates of $P$.

[CBSE - 2008]

CO-ORDINATE GEOMETRY

Sol. 25. $\quad (4,-2)$



विषयसूची

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें