मात्रिका अभ्यास 03

प्रश्न:

पता करें 1/2(A+ A T ) और 1/2(A− A T ), जब A=[0ab-a0c-b-c0]

उत्तर:

  1. AT पता करें:

AT = [0-a-ba0cb-c0]

  1. 1/2(A + AT) पता करें:

1/2(A + AT) = [0000ac0c0]

  1. 1/2(A - AT) पता करें:

1/2(A - AT) = [0ab-a0-c-bc0]

प्रश्न:

जवाब: (i) A+B = [-53-2699-142]

(A+B)T = [-56-1394-292]

AT = [-15-2271391]

BT = [-411123-501]

AT + BT = [-56-1394-292]

([cosαsinα-sinαcosα])([cosαsinα-sinαcosα])=[1001]

(ii) A’A =

निम्नलिखित प्रत्यूह के प्रतिलोम को ढूंढें: (i) [51/2-1] (ii) [1-123] (iii) [-156√35623-1]

उत्तर:

(i) [51/2-1]

(ii) [12-13]

(iii) [-1√3255366-1]

B=[-121]

To verify that (AB)′=B′A′, first compute AB:

AB=[1-43][-121]=[-11011]

Taking the transpose of AB:

(AB)′=[-11011]

Now compute B′A′:

B′=[-121]

A′=[1-43]

B′A′=[-11011]

Therefore, (AB)′=B′A′ is verified.

(ii) A=[012], B=[157]

To verify that (AB)′=B′A′, first compute AB:

AB=[01205701014][157]=[203448]

Taking the transpose of AB:

(AB)′=[203448]

Now compute B′A′:

B′=[157]

A′=[012]

B′A′=[203448]

Therefore, (AB)′=B′A′ is verified.

देखें, (A+A′) = [2111114], which is equal to its transpose. So, (A+A′) is a symmetric matrix.

(ii) To verify that (A−A′) is a skew symmetric matrix, we need to show that its transpose is equal to the negation of itself.

(A−A′) = [0-110]

Transposing (A−A′) gives us [01-10]

We can see that this is equal to the negation of (A−A′), so (A−A′) is a skew symmetric matrix.

अगर A, B एक ही क्रम के symmetric मैट्रिक्स हैं, तो AB−BA का उत्तर एक शून्य प्रतिष्ठान है।

उत्तर: C शून्य प्रतिष्ठान मैट्रिक्स

प्रश्न:

निम्नलिखित मैट्रिक्स को एक symmetric और एक skew symmetric मैट्रिक्स के रूप में व्यक्त करें: (i) [ 3 5 1 -1 ] (ii) [ 6 -2 2 -2 3 -1 2 -1 3 ] (iii) [ 3 3 -1 -2 -2 1 -4 -5 2 ] (iv) [ 1 5 -1 2 ]

उत्तर:

The given matrix A is:

[1 -1 5] [-1 2 1] [5 1 3]

Let’s find the transpose of matrix A:

AT =

[1 -1 5] [-1 2 1] [5 1 3]

Since A = AT, the matrix A is symmetric.

(ii) A matrix A is skew symmetric if A = -AT, where AT is the transpose of A.

The given matrix A is:

[0 1 -1] [-1 0 1] [1 -1 0]

Let’s find the transpose of matrix A:

AT =

[0 -1 1] [1 0 -1] [-1 1 0]

Then, -AT =

[0 1 -1] [-1 0 1] [1 -1 0]

Since A = -AT, the matrix A is skew symmetric.

इसलिए, (A+B)′ = A′+B′ होता है।

(ii) To verify that (A−B)′=A′−B′, we need to calculate (A−B)′ and A′−B′ separately and then compare them.

(A−B)′ = [42-2-20-21-3-3]

A′−B′ = [42-2-20-21-3-3]

इसलिए, (A−B)′ = A′−B′ होता है।

Since (A+B)′=A′+B′, हम यह निष्कर्ष निकाल सकते हैं कि (i) सत्य है।

(ii) (A−B)′=A′−B′ की पुष्टि करने के लिए, हमें (A−B)′ और A′−B′ को अलग-अलग कैलकुलेट करके उन्हें तुलना करनी होगी।

(A−B)′ = [42-1-10-21-12]

A′−B′ = [42-1-10-21-12]

Since (A−B)′=A′−B′, हम यह निष्कर्ष निकाल सकते हैं कि (ii) सत्य है।

प्रश्न:

यदि A′=[-2312] और B=[-1012] हैं, तो (A+2B)′ की प्राप्त करें।

उत्तर:

चरण 1: A और 2B जोड़ें ताकि (A + 2B) प्राप्त करें A + 2B = [-3636]

चरण 2: (A + 2B) का प्रतिस्थापन पाएं (A + 2B)′ = [-3366]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें