Sets And Relation

Laws of Algebra of sets (Properties of sets):

  • Commutative law

$$A \cup B=B \cup A $$

$$ A \cap B=B \cap A$$

  • Associative law

$$(A \cup B) \cup C=A \cup(B \cup C) $$ $$ (A \cap B) \cap C=A \cap(B \cap C)$$

  • Distributive law $$A \cup(B \cap C)=(A \cup B) \cap(A \cup C) $$ $$ A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$$

  • De-morgan law $$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} $$ $$ (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$$

  • Identity law $$A \cap U=A $$ $$ A \cup \phi=A$$

  • Complement law

$$A \cup A^{\prime}=U$$ $$ A \cap A^{\prime}=\phi$$ $$ \left(A^{\prime}\right)^{\prime}=A$$

  • Idempotent law $$A \cap A=A$$ $$ A \cup A=A$$

Some important results on number of elements in sets:

PYQ-2023-Sequence_and_Series-Q20

$\quad$ If $A, B, C$ are finite sets and $U$ be the finite universal set then

  • $$n(A \cup B)=n(A)+n(B)-n(A \cap B)$$

  • $$\quad n(A-B)=n(A)-n(A \cap B)$$

  • $$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$$

  • Number of elements in exactly two of the sets $A, B, C$

$$n(A \cap B)+n(B \cap C)+n(C \cap A)-3 n(A \cap B \cap C)$$

  • Number of elements in exactly one of the sets $A, B, C$ $$ n(A)+n(B)+n(C)-2 n(A \cap B)-2 n(B \cap C)-2 n(A \cap C) +3 n(A \cap B \cap C) $$

  • If A has n elements, then P(A) has $2^n$ elements

  • The total number of subsets of a finite set containing n elements is $2^n$

  • Number of proper subsets of A, containing n elements is $2^n - 1$

  • Number of non-empty subsets of A, containing n elements is $2^n - 1$

Types of relations :

PYQ-2023-Sequence_and_Series-Q21



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें