Atomic Structure - Result Question 3

3. What is the work function of the metal, if the light of wavelength $4000 $ Å generates photoelectron of velocity $6 \times 10^5 \mathrm{~ms}^{-1}$ from it?

(Mass of electron $=9 \times 10^{-31} $ $kg$

Velocity of light $=3 \times 10^{8} $ $ms^{-1}$

Planck’s constant $=6.626 \times 10^{-34} $ $Js$

Charge of electron $=1.6 \times 10^{-19} $ $JeV^{-1}$ )

(2019 Main, 12 Jan I)

(a) $4.0 $ $eV$

(b) $2.1 $ $eV$

(c) $0.9 $ $eV$

(d) $3.1 $ $eV$

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Work function of metal $(\phi)=h v _0$

where, $v _0=$ threshold frequency

Also, $\quad \dfrac{1}{2} m _e v^{2}=h v-h v _0$

or

$ \begin{aligned} & \dfrac{1}{2} m _e v^{2}=h v-\phi \hspace{10mm} …(i) \\ & \dfrac{1}{2} m _e v^{2}=\dfrac{h c}{\lambda}-\phi \hspace{10mm}…(ii) \end{aligned} $

Given : $\lambda=4000 $ $Å=4000 \times 10^{-10} m$

$ \begin{aligned} v & =6 \times 10^{5} ms^{-1}, \\ m _e & =9 \times 10^{-31} kg, c=3 \times 10^{8} ms^{-1} \\ h & =6.626 \times 10^{-34} Js \end{aligned} $

Thus, on substituting all the given values in Eq. (i), we get

$ \dfrac{1}{2} \times 9 \times 10^{-31} kg \times\left(6 \times 10^{5} ms^{-1}\right)^{2} $

$=\dfrac{6.626 \times 10^{-34} J s \times 3 \times 10^{8} ms^{-1}}{4000 \times 10^{-10} m}-\phi $

$ \therefore \quad \phi=1.62 \times 10^{-21} kgm^{2} s^{-2}-4.96 \times 10^{-19} J $

$=3.36 \times 10^{-19} J \hspace{30mm}\left[1 kg m^{2} s^{-2}=1 J\right] $

$=2.1 eV$