Atomic Structure Result Question 5-1

5. For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}{\text {max }}-\bar{v}{\text {min }}$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}{\text {Lyman }} / \Delta \bar{v}{\text {Balmer }}$ is

(2019 Main, 9 April I)

(a) $27: 5$

(b) $5: 4$

(c) $9: 4$

(d) $4: 1$

Show Answer

Answer:

Correct Answer: 5. ( c )

Solution:

  1. For any given series of spectral lines of atomic hydrogen.

Let $\Delta \bar{v}=\bar{v}{\text {max }}-\bar{v}{\text {min }}$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$.

For Lyman series,

$\Delta \bar{v}=\bar{v}{\text {max }}-\bar{v}{\text {min }}$

General formula:

$\overline{\mathrm{v}}=109677\left[\dfrac{1}{n_i^2}-\dfrac{1}{n_f^2}\right]$

For Lyman $n_1=1, n_2=2,3, \ldots$

$\begin{aligned} & \bar{v}{\max }=109,677\left(\dfrac{1}{1}-\dfrac{1}{\infty}\right)=109,677\left(\dfrac{1}{1}-0\right)=109,677 \\ & \bar{v}{\min }=109,677\left(\dfrac{1}{1}-\dfrac{1}{(2)^2}\right) \\ & \Delta \bar{v}{\text {Lyman }}=\bar{v}{\max }-\bar{v}_{\min } \\ &=109,677-\left[\dfrac{109,677 \times 3}{4}\right]=\dfrac{109,677}{4} \end{aligned}$

For Balmer series,

$\overline{\mathrm{v}}_{\text {max }}=109,677\left(\dfrac{1}{(2)^2}-\dfrac{1}{\infty}\right) \Rightarrow \dfrac{109677}{4} $

$\overline{\mathrm{v}}_{\text {min }}=109,677\left(\dfrac{1}{(2)^2}-\dfrac{1}{(3)^2}\right) \Rightarrow \dfrac{109677 \times 5}{36}$

$\Delta \overline{\mathrm{v}}=\overline{\mathrm{v}}{\max }-\overline{\mathrm{v}}{\text {min }} $

$\Delta \overline{\mathrm{v}}_{\text {Balmer }}=\dfrac{109,677}{4}-\left[\dfrac{109,677}{36} \times 5\right]=109,677\left(\dfrac{1}{9}\right) $

$\dfrac{\Delta \overline{\mathrm{v}}{\text {Lyman }}}{\Delta \overline{\mathrm{v}}{\text {Balmer }}}=\dfrac{109,677 / 4}{109,677 / 9} $

$\dfrac{\Delta \overline{\mathrm{v}}{\text {Lyman }}}{\Delta \overline{\mathrm{v}}{\text {Balmer }}}=\dfrac{9}{4}$

$\therefore$ The ratio of $\dfrac{\Delta \bar{v}{\text {Lyman }}}{\Delta \bar{v}{\text {Balmer }}}$ is $9: 4$.