Atomic Structure Result Question 8-1

8. The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

(2019 Main, 11 Jan II)

(a) $\lambda \propto \dfrac{1}{\left(v-v_0\right)^{\dfrac{1}{4}}}$

(b) $\lambda \propto \dfrac{1}{\left(v-v_0\right)^{\dfrac{3}{2}}}$

(c) $\lambda \propto \dfrac{1}{\left(v-v_0\right)}$

(d) $\lambda \propto \dfrac{1}{\left(v-v_0\right)^{\dfrac{1}{2}}}$

Show Answer

Answer:

Correct Answer: 8. ( d )

Solution:

  1. de-Broglie wavelength $(\lambda)$ for electron is given by

$\lambda=\dfrac{h}{\sqrt{2 m \mathrm{~K} \cdot \mathrm{E}}}\quad$ …..(i)

Also, according to photoelectric effect

$\mathrm{KE}=h \nu-h v_0$

On substituting the value of $KE$ in Eq (i), we get

$\begin{aligned} & \lambda=\dfrac{h}{\sqrt{2 m \times\left(h v-h v_0\right)}} \\ & \lambda \propto \dfrac{1}{\left(v-v_0\right)^{1 / 2}} \end{aligned}$