Chemical Kinetics - Result Question 1

1. $NO _2$ required for a reaction is produced by the decomposition of $N _2 O _5$ in $CCl _4$ as per the equation,

$ 2 N _2 O _5(g) \longrightarrow 4 NO _2(g)+O _2(g) $

The initial concentration of $N _2 O _5$ is $3.00 mol L^{-1}$ and it is $2.75 mol L^{-1}$ after 30 minutes. The rate of formation of $NO _2$ is

(2019 Main, 12 April II)

(a) $4.167 \times 10^{-3} mol L^{-1} min^{-1}$

(b) $1.667 \times 10^{-2} mol L^{-1} min^{-1}$

(c) $8.333 \times 10^{-3} mol L^{-1} min^{-1}$

(d) $2.083 \times 10^{-3} mol L^{-1} min^{-1}$

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

$ \text { The rate of a chemical reaction means the speed } $

with which the reaction takes place.

For $ \quad \quad R \longrightarrow P $

Rate of disappearance of $R$

$ =\frac{\text { Decrease in conc. of } R}{\text { Time taken }}=-\frac{\Delta[R]}{\Delta t} $

Rate of appearance of $P$

$ =\frac{\text { Increase in conc. of } P}{\text { Time taken }}=+\frac{\Delta[P]}{\Delta t} $

Given, $\left[N _2 O _5\right] _{\text {initial }}=3.00 mol L^{-1}$

After $30 min,\left[N _2 O _5\right]=2.75 mol L^{-1}$

$ \begin{array}{ll} & 2 N _2 O _5(g) \longrightarrow 4 NO _2(g)+O _2(g) \\ t=0 & 3.0 M \\ t=30 & 2.75 M \end{array} $

From the equation, it can be concluded that

$ \begin{aligned} & \quad \frac{1}{2} \times \frac{-\Delta\left[N _2 O _5\right]}{\Delta t}=\frac{1}{4} \times \frac{\Delta\left[NO _2\right]}{\Delta t} \\ & =\frac{-\Delta\left[N _2 O _5\right]}{\Delta t}=\frac{-(2.75-3.00) mol L^{-1}}{30} \Rightarrow \frac{0.25}{30} \\ & \text { and } \quad \frac{\Delta\left[NO _2\right]}{\Delta t}=-2 \frac{\Delta\left(N _2 O _5\right)}{\Delta t} \Rightarrow \frac{\Delta\left[NO _2\right]}{\Delta t}=-2 \times \frac{0.25}{30} \\ & =-1.667 \times 10^{-2} mol L^{-1} min^{-1} \end{aligned} $