Chemical Kinetics - Result Question 16

19. Two reactions $R _1$ and $R _2$ have identical pre- exponential factors. Activation energy of $R _1$ exceeds that of $R _2$ by $10$ $ kJ$ $mol^{-1}$. If $k _1$ and $k _2$ are rate constants for reactions $R _1$ and $R _2$, respectively at $300 $ $K$, then $\ln \left(\dfrac{k _2}{k _1}\right)$ is equal to

$(R=8.314$ $ J $ $mol^{-1} K^{-1})$

(2017 Main)

(a) $8$

(b) $12$

(c) $6$

(d) $4$

Show Answer

Answer:

Correct Answer: 19. (d)

Solution:

  1. According to Arrhenius equation

$ k=A e^{-E _a / R T} $

where, $A=$ collision number or pre-exponential factor.

$R=$ gas constant

$T=$ absolute temperature

$E _a=$ energy of activation

For reaction $R _1, k _1=A e^{-E _{a _1} / R T}$$\quad$ …….. (i)

For reaction $R _2, k _2=A e^{-E _{a _2} / R T}$$\quad$ …….. (ii)

On dividing Eq. (ii) by Eq. (i), we get

$ \dfrac{k _2}{k _1}=e^{-\dfrac{\left(E _{a _2}-E _{a _1}\right)}{R T}} $$\quad$ …….. (iii)

Taking $\ln$ on both the sides of Eq. (iii), we get

$ \ln \left(\dfrac{k _2}{k _1}\right)=\dfrac{E _{a _1}-E _{a _2}}{R T} $

Given, $\quad E _{a _1}=E _{a _2}+10$ $ kJ $ $mol^{-1}=E _{a _2}+10,000 $ $J$ $ mol^{-1}$

$ \therefore \quad \ln \dfrac{k _2}{k _1}=\dfrac{10,000 J mol^{-1}}{8.314 J mol^{-1} K^{-1} \times 300 K}=4 $