Chemical Kinetics - Result Question 47

47. Consider the following reversible reaction,

$ A(g)+B(g) \rightleftharpoons A B(g) $

The activation energy of the backward reaction exceeds that of the forward reaction by $2 R T$ (in $J$ $mol^{-1}$ ). If the pre-exponential factor of the forward reaction is 4 times that of the reverse reaction, the absolute value of $\Delta G^{\ominus}$ (in $J$ $mol^{-1}$ ) for the reaction at $300 K$ is

(Given; $\ln (2)=0.7 R T=2500 J mol^{-1}$ at $300 K$ and $G$ is the Gibbs energy)

(2018 Adv.)

$(2006,3 \times 4 M=12 M)$

Show Answer

Answer:

Correct Answer: 47. $(+8500 \mathrm{~J} / \mathrm{mol})$

Solution:

  1. For the reaction,

$ A(g)+B(g) \rightleftharpoons A B(g) $

Given $\quad E _{a _b}=E _{a _f}+2 R T$ or $E _{a _b}-E _{a _f}=2 R T$

Further

$ A _f=4 A _b \quad \text { or } \quad \dfrac{A _f}{A _b}=4 $

Now, rate constant for forward reaction,

$ k _f=A _f e^{-E _{a _f} / R T} $

Likewise, rate constant for backward reaction,

$ k _b=A _b e^{-E _{a _b} / R T} $

At equilibrium,

Rate of forward reaction $=$ Rate of backward reaction

$ \begin{array}{ll} \text { i.e., } & k _f=k _b \text { or } \dfrac{k _f}{k _b}=k _{e q} \\ \text { so } & k _{e q}=\dfrac{A _f e^{-E _a / R T}}{A _b e^{-E _{a b} / R T}}=\dfrac{A _f}{A _b} e^{-\left(E _{a _f}-E _{a _b}\right) / R T} \end{array} $

After putting the given values

$ k _{e q}=4 e^{2} \quad\left(\text { as } E _{a _b}-E _{a _f}=2 R T \text { and } \dfrac{A _f}{A _b}=4\right) $

$ \text { Now, } \quad \begin{aligned} \Delta G^{\circ} & =-R T \ln K _{eq}=-2500 \ln \left(4 e^{2}\right) \\ & =-2500\left(\ln 4+\ln e^{2}\right)=-2500(1.4+2) \\ & =-2500 \times 3.4=-8500 J / mol \end{aligned} $

Absolute value $=8500 J / mol$