Chemical Kinetics - Result Question 56
56. An organic compound undergoes first order decomposition. The time taken for its decomposition to $1 / 8$ and $1 / 10$ of its initial concentration are $t _{1 / 8}$ and $t _{1 / 10}$ respectively. What is the value of $\dfrac{\left[t _{1 / 8}\right]}{\left[t _{1 / 10}\right]} \times 10 ?\left(\log _{10} 2=0.3\right)$
(2012)
Show Answer
Answer:
Correct Answer: 56. $(9)$
Solution:
- For a first order process $k t=\ln \dfrac{[A] _0}{[A]}$
where, $[A] _0=$ initial concentration.
$[A]=$ concentration of reactant remaining at time " $f$ “.
$\Rightarrow \quad k t _{1 / 8}=\ln \dfrac{[A] _0}{[A] _0 / 8}=\ln 8 …….. (i)$
and
$ k t _{1 / 10}=\ln \dfrac{[A] _0}{[A] _0 / 10}=\ln 10 …….. (ii) $
Therefore, $\quad \dfrac{t _{1 / 8}}{t _{1 / 10}}=\dfrac{\ln 8}{\ln 10}=\log 8=3 \log 2=3 \times 0.3=0.9$
$ \Rightarrow \quad \dfrac{t _{1 / 8}}{t _{1 / 10}} \times 10=0.9 \times 10=9 $