Chemical Kinetics - Result Question 6

6. The given plots represent the variation of the concentration of a reaction $R$ with time for two different reactions (i) and (ii). The respective orders of the reactions are

(2019 Main, 9 April I)

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-179_jpg_height_226_width_566_top_left_y_1790_top_left_x_1348.jpg"width="450">

(a) $1,1$

(b) $0,2$

(c) $0,1$

(d) $1,0$

Show Answer

Answer:

Correct Answer: 6. (d)

Solution:

  1. In first order reaction, the rate expression depends on the concentration of one species only having power equal to unity.

$ n R \longrightarrow \text { products } $

$ \frac{-d[R]}{d t}=k[R] $

On integration, $-\ln [R]=k t-\ln \left[R _0\right]$

or

$ \begin{aligned} \ln (R) & =\ln \left(R _0\right)-k t \\ y & =c+m x \\ m= & \text { slope }=-k(\text { negative }) \\ c= & \text { intercept }=\ln \left(r _0\right) \end{aligned} $

The graph for first order reactions is

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-187_jpg_height_264_width_359_top_left_y_1524_top_left_x_472.jpg"width="250">

In zero order reaction,

$ \begin{array}{cc} {[R] \longrightarrow \text { product }} \\ \therefore \quad \frac{-d[R] _t}{d t}=k \text { or }-d[R] _t=k d t \end{array} $

On integrating, $-[R] _t=k t+c$

$ \begin{array}{ll} \text { If } & t=0,[R] _t=[R] _0 \\ \therefore & -[R] _t=k t-[R] _0 \\ & {[R] _t=[R] _0-k t} \end{array} $

Thus, the graph plotted between $[r] _t$ and $t$ gives a straight line with negative slope $(-k)$ and intercept equal to $[R] _0$.

The graph for zero order reaction is

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-187_jpg_height_301_width_436_top_left_y_2306_top_left_x_436.jpg"width="250">