Chemical Kinetics - Result Question 8

8. For the reaction, $2 A+B \rightarrow C$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is

(2019 Main, 8 April I)

$[\boldsymbol{A}]\left(mol L^{-1}\right)$ $[\boldsymbol{B}]\left(mol L^{-1}\right)$ Initial rate
$\left(mol L^{-1} s^{-1}\right)$
0.05 0.05 0.045
0.10 0.05 0.090
0.20 0.10 0.72

(a) rate $=k[A][B]^{2}$

(b) rate $=k[A]^{2}[B]^{2}$

(c) rate $=k[A][B]$

(d) rate $=k[A]^{2}[B]$

Show Answer

Answer:

Correct Answer: 8. (a)

Solution:

  1. Let the rate equation be $k[A]^{x}[B]^{y}$

From Ist values,

$ 0.045=k[0.05]^x[0.05]^y ……(i) $

From 2nd values,

$ 0.090=k[0.10]^x[0.05]^y……(ii) $

From 3rd values,

$ 0.72=k[0.20]^x[0.10]^y……(iii) $

On dividing equations (i) by (ii), we get

$ \begin{aligned} \frac{0.045}{0.09} & =\left[\frac{0.05}{0.10}\right]^x \\ {\left[\frac{0.05}{0.10}\right]^1 } & =\left[\frac{0.05}{0.10}\right]^x \\ \therefore x & =1 \end{aligned} $

Similarly on dividing Eq. (ii) by (iii) we get

$ \begin{aligned} & \frac{0.09}{0.72}=\left[\frac{0.1}{0.2}\right]^x\left[\frac{0.05}{0.10}\right]^y \\ & \frac{0.01}{0.08}=\frac{0.1}{0.2}\left[\frac{0.05}{0.1}\right]^y \\ & 0.25=\left[\frac{0.05}{0.10}\right]^y \\ & 0.25=[0.5]^\gamma \\ & {[0.5]^2=[0.5]^y} \\ & \therefore y =2 \\ & \end{aligned} $

Hence, the rate law for the reaction

$ \text { Rate }=k[A][B]^2 $