Chemical Kinetics - Result Question 9

9. For a reaction, consider the plot of $\ln k$ versus $1 / T$ given in the figure. If the rate constant of this reaction at $400 $ $K$ is $10^{-5} $ $s^{-1}$, then the rate constant at $500 $ $K$ is

(2019 Main, 12 Jan II)

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-180_jpg_height_255_width_356_top_left_y_900_top_left_x_519.jpg"width="350">

(a) $4 \times 10^{-4}$ $ s^{-1}$

(b) $10^{-6} $ $s^{-1}$

(c) $10^{-4} $ $s^{-1}$

(d) $2 \times 10^{-4} $ $s^{-1}$

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

  1. The temperature dependence of a chemical reaction is expressed by Arrhenius equation,

$ k=A e^{-E _a / R T} $$\quad$ …….. (i)

Taking natural logarithm on both sides, the Arrhenius equation becomes,

$ \ln k=\ln A-\dfrac{E _a}{R T} $

where, $-\dfrac{E _a}{R}$ is the slope of the plot and $\ln A$ gives the intercept.

Eq. (i) at two different temperatures for a reaction becomes,

$ \ln \dfrac{k _2}{k _1}=\dfrac{E _a}{R}\left(\dfrac{1}{T _1}-\dfrac{1}{T _2}\right) $ $\quad$ …….. (ii)

$\Rightarrow$ In the given problem,

$ \begin{gathered} T _1=400 K, T _2=500 K \\ k _1=10^{-5} s^{-1}, k _2=? \end{gathered} $

$-\dfrac{E _a}{R}$ (Slope) $=-4606$

On substituting all the given values in Eq. (ii), we get

$ \begin{gathered} \ln \dfrac{k _2}{10^{-5}}=4606\left(\dfrac{1}{400}-\dfrac{1}{500}\right) \\ \ln \dfrac{k _2}{10^{-5}}=2.303 \\ \dfrac{k _2}{10^{-5}}=10 \Rightarrow k _2=10^{-4} s^{-1} \end{gathered} $

Therefore, rate constant for the reaction at $500$ $ K$ is $10^{-4} $ $S^{-1}$.