Electrochemistry Result Question 4

4. The standard Gibbs energy for the given cell reaction in kJ $\mathrm{mol}^{-1}$ at 298 K is

$ \begin{aligned} & \mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s), \\ & E^{\circ}=2 \mathrm{~V} \text { at } 298 \mathrm{~K} \end{aligned} $

(Faraday’s constant, $F=96000 $ $\mathrm{C} $ $\mathrm{mol}^{-1}$ )

(2019 Main, 9 April I)

(a) 384

(b) 192

(c) -384

(d) -192

Show Answer

Answer:

Correct Answer: 4. ( c )

Solution:

  1. Key Idea: Gibbs energy of the reaction is related to $E_{\text {cell }}^{\circ}$ by the following formula

$ \begin{aligned} \Delta G^{\circ} & =-n F E^{\circ} \text { cell } \\ \Delta G^{\circ} & =\text { Gibbs energy of cell } \\ n F & =\text { amount of charge passed } \\ E & =\text { EMF of a cell } \end{aligned} $

Given reaction is,

$ \begin{aligned} & \quad \mathrm{Zn}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu} \\ & E_{\text {cell }}^{\mathrm{o}}=2.0 \mathrm{~V} \\ & F=96000 \mathrm{C} \\ & n=2 \end{aligned} $

To find the value of $\Delta G^{\circ}(\mathrm{kJ} \mathrm{mol})$, we use the formula

$ \begin{aligned} & \Delta G^{\circ}=-n F E_{\text {cell }}^{\circ} \\ & \Delta G^{\circ}=-2 \times 96000 \times 2=-384000 \mathrm{~J} / \mathrm{mol} \end{aligned} $

In terms of $\mathrm{kJ} / \mathrm{mol}, \Delta G^{\circ}=\frac{-384000}{1000}=-384 \mathrm{~kJ} / \mathrm{mol}$