Electrochemistry Result Question 42

42. Calculate the equilibrium constant for the reaction

$ \mathrm{Fe}^{2+}+\mathrm{Ce}^{4+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ce}^{3+} $

Given, $E^{\circ}\left(\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}\right)=1.44 \mathrm{V}, E^{\circ}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=0.68 \mathrm{V}$

(1997, 2M)

Show Answer

Answer:

Correct Answer: $(6.88 \times 10^{12})$

Solution:

$ \mathrm{Fe}^{2+}+\mathrm{Ce}^{4+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ce}^{3+} $

$E^{\circ} =E^{\circ}\left(\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}\right)-E^{\circ}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right) $

$ =1.44-0.68=0.76 \mathrm{~V} $

$\because \quad E^{\circ} =0.0592 $ $\log$ $ K $

$\Rightarrow \log K =\frac{E^{\circ}}{0.0592}=\frac{0.76}{0.0592}=12.83 $

$\Rightarrow K =6.88 \times 10^{12} $