Electrochemistry Result Question 49

49. The emf of a cell corresponding to the reaction.

$ \mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{Zn}^{2+}(0.1 \mathrm{M})+\mathrm{H}_2,(g, 1 \mathrm{~atm}) $

is 0.28 V at $25^{\circ} \mathrm{C}$.

Write the half-cell reactions and calculate the pH of the solution at the hydrogen electrode.

$ E^{\circ}\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)=-0.76 \mathrm{~V} E_{\mathrm{H}^{+} / \mathrm{H}_2}^{\circ}=0 $

Show Answer

Answer:

Correct Answer: 49. $(8.6)$

Solution:

  1. At anode: $\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 e^{-} \quad E^{\circ}=0.76 \mathrm{~V}$

At cathode: $2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}_2 (\mathrm{~g}) \quad E^{\circ}=0.00 \mathrm{~V}$

$\Rightarrow \quad$ For $\quad \mathrm{Zn}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_2(g) \quad E^{\circ}=0.76 \mathrm{~V}$

$ \begin{aligned} & E=E^{\circ}-\frac{0.0592}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^2} \\ & \Rightarrow \quad \frac{2\left(E-E^{\circ}\right)}{0.0592}=-\log \left[\mathrm{Zn}^{2+}\right]-2 \log \frac{1}{\left[\mathrm{H}^{+}\right]} \\ & \Rightarrow \quad-16.2=-\log (0.1)-2 \mathrm{pH} \\ & \Rightarrow \quad \mathrm{pH}=\frac{1+16.2}{2}=8.6
\end{aligned} $