Electrochemistry Result Question 6

6. Given the equilibrium constant $\left(K_C\right)$ of the reaction :

$ \mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s) $

is $10 \times 10^{15}$, calculate the $E_{\text {cell }}^{\circ}$ of this reaction at 298 K .

$ \left[2.303 \dfrac{R T}{F} \text { at } 298 \mathrm{~K}=0.059 \mathrm{~V}\right] $

(2019 Main, 11 Jan II)

(a) $0.4736 $ $V$

(b) $0.04736$ $ mV$

(c) $0.4736 $ $mV$

(d) $0.04736 $ $V$

Show Answer

Answer:

Correct Answer: 6. ( a )

Solution:

  1. According to Nernst equation,

$ E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log Q $

Given, $\frac{2.303 R T}{F}=0.059 \mathrm{~V}$

$ \therefore \quad E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.059}{n} \log Q $

At equilibrium, $E_{\text {cell }}=0$

$ E_{\text {cell }}^{\circ}=\frac{0.059}{n} \log K_C $

For the given reaction, $n=2$

Also,

$ K_C=10 \times 10^{15} \quad $ [given]

$ \therefore \quad E_{\text {cell }}^{\circ}=\frac{0.059}{2} \log \left(10 \times 10^{15}\right)=0.472 \mathrm{~V} \approx 0.473 \mathrm{~V} $