Solid State - Result Question 15

15. $CsCl$ crystallises in body centred cubic lattice. If ’ $a$ ’ its edge length, then which of the following expressions is correct?

(a) $r _{Cs^{+}}+r _{Cl^{-}}=3 a$

(b) $r _{Cs^{+}}+r _{Cl^{-}}=\dfrac{3 a}{2}$

(c) $r _{Cs^{+}}+r _{Cl^{-}}=\dfrac{\sqrt{3}}{2} a$

(d) $r _{Cs^{+}}+r _{Cl^{-}}=\sqrt{3} a$

(2014 Main)

Show Answer

Answer:

Correct Answer: 15. (c)

Solution:

  1. In $CsCl, Cl^{-}$ lies at corners of simple cube and $Cs^{+}$ at the body centre. Hence, along the body diagonal, $Cs^{+}$and $Cl^{-}$ touch each other so $r _{Cs^{+}}+r _{Cl^{-}}=2 r$

Calculation of $r$

In $\triangle E D F$,

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/snip_images_Gyp9scsJwFnpQBJPfOobKPWSJmWlvsoTDQWHZy6iHv8_original_fullsize_png.jpg"width="250"/>

Body centred cubic unit cell

$ F D=b=\sqrt{a^{2}+a^{2}}=\sqrt{2} a $

In $\triangle A F D$,

$ \begin{aligned} & c^{2}=a^{2}+b^{2}=a^{2}+(\sqrt{2} a)^{2}=a^{2}+2 a^{2} \\ & c^{2}=3 a^{2} \Rightarrow c=\sqrt{3} a \end{aligned} $

As $\triangle A F D$ is an equilateral triangle.

$\therefore \sqrt{3} a =4 r \quad$ $[\therefore C = 3r + r + r ]$

$\Rightarrow r =\dfrac{\sqrt{3} a}{4} $

Hence, $ r _{Cs^{+}}+r _{Cl^{-}} =2 r=2 \times \dfrac{\sqrt{3}}{4} a=\dfrac{\sqrt{3}}{2} a$