Solid State - Result Question 38
38. The edge length of unit cell of a metal having molecular weight $75 $ $g / mol$ is $5 Å$ which crystallises in cubic lattice. If the density is $2$ $ g / cc$ then find the radius of metal atom. $\left(N _A=6 \times 10^{23}\right)$. Give the answer in pm.
(2006, 3M)
Show Answer
Answer:
Correct Answer: 38. $(217$ $ pm)$
Solution:
- From the given information, the number of atoms per unit cell and therefore, type of unit cell can be known as
$\rho =\dfrac{N M}{N _A a^{3}} $
$\Rightarrow \quad N =\dfrac{\rho N _A a^{3}}{M}=\dfrac{2 \times 6 \times 10^{23} \times\left(5 \times 10^{-8} cm\right)^{3}}{75}=2(bcc) $
$\Rightarrow \quad \text { In bcc, } 4 r =\sqrt{3} a $
$\Rightarrow \quad r =\dfrac{\sqrt{3}}{4} a=\dfrac{\sqrt{3}}{4} \times 5 \times 10^{-10} m$
$=\quad 2.17 \times 10^{-10} m=217$ $ pm$