Solid State - Result Question 43

43. A metal crystallises into two cubic phases, face centred cubic (fcc) and body centred cubic (bcc), whose unit cell lengths are $3.5$ and $3.0 Å$, respectively. Calculate the ratio of densities of fcc and bcc.

(1999, 3M)

Show Answer

Answer:

Correct Answer: 43. $(1.26)$

Solution:

  1. Density $\propto \dfrac{N}{a^{3}}$

$ \Rightarrow \quad \dfrac{d _1}{d _2}=\dfrac{N _1}{N _2}\left(\dfrac{a _2}{a _1}\right)^{3}=\dfrac{4}{2}\left(\dfrac{3}{3.5}\right)^{3}=1.26 $