Solid State - Result Question 6

6. The radius of the largest sphere which fits properly at the centre of the edge of a body centred cubic unit cell is (Edge length is represented by ’ $a$ ‘)

(2019 Main, 11 Jan II)

(a) $0.134 $ $a$

(b) $0.027$ $ a$

(c) $0.047$ $ a$

(d) $0.067 $ $a$

Show Answer

Answer:

Correct Answer: 6. (d)

Solution:

  1. For body centred cubic bcc structure,

radius $(R)=\frac{\sqrt{3}}{4} a\quad$ ……(i)

Where, $a=$ edge length

According to question, the structure of cubic unit cell can be shown as follows:

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/snip_images_qPXND8siD42uzLyy-k9n5lvo2zSmfUIwSR86i1BKbaM_original_fullsize_png.jpg"width="300"/>

$\therefore \quad a=2(R+r)\quad$ …..(ii)

On substituting the value of $R$ from Eq. (i) to Eq. (ii), we get

$ \frac{a}{2}=\frac{\sqrt{3}}{4} a+r $

$ \begin{aligned} & r=\frac{a}{2}-\frac{\sqrt{3}}{4} a=\frac{2 a-\sqrt{3} a}{4} \\ & r=\frac{a(2-\sqrt{3})}{4} \\ & r=0.067 a \end{aligned} $