Solid State - Result Question 8

8. A compound of formula $A _2 B _3$ has the hep lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms ?

(2019 Main, 10 Jan II)

(a) hcp lattice- $A, \dfrac{2}{3}$ tetrahedral voids- $B$

(b) hcp lattice- $A, \dfrac{1}{3}$ tetrahedral voids- $B$

(c) hcp lattice- $B, \dfrac{1}{3}$ tetrahedral voids- $A$

(d) hcp lattice- $B, \dfrac{2}{3}$ tetrahedral voids- $A$

Show Answer

Answer:

Correct Answer: 8. (c)

Solution:

  1. Total effective number of atoms in hcp unit lattice $=$ Number of octahedral voids in $h c p=6$

$\therefore$ Number of tetrahedral voids (TV) in hcp

$ \begin{aligned} & =2 \times \text { Number of atoms in hep lattice } \\ & =2 \times 6=12 \end{aligned} $

As, formula of the lattice is $A _2 B _3$.

Suppose, $A$ $B$
$\left(\dfrac{1}{3} \times TV\right)$ (hcp)
$\Rightarrow$ $\dfrac{1}{3} \times 12$ 6
$\Rightarrow$ $\dfrac{2}{3}$ 1
$\Rightarrow$ 2 3

So, $A=\dfrac{1}{3}$ tetrahedral voids, $B=$ hcp lattice