Solutions and Colligative Properties - Result Question 11-1

11. A solution contain $62$ g of ethylene glycol in $250$ g of water is cooled upto $-10^{\circ} \mathrm{C}$. If $K_f$ for water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, then amount of water (in g) separated as ice is

(2019 Main, 9 Jan II)

(a) $32$

(b) $48$

(c) $64$

(d) $16$

Show Answer

Answer:

Correct Answer: 11. (c)

Solution:

Considering the expression of the depression in freezing point of a solution,

$\Delta T_f =K_f \times m \times i $

$T_f^{\circ}-T_f =K_f \times \dfrac{w_B \times 1000}{M_B \times w_A(in \hspace{1mm} g)} \times i\quad$ ……(i)

Here, $T_f^{\circ}=0^{\circ} \mathrm{C}, T_f=-10^{\circ} \mathrm{C}$

$w_B =\text { mass of ethylene } \mathrm{glycol}=62 \mathrm{~g} $

$M_B =\text { molar mass of ethylene glycol } $

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/snip_images_p-11u1iPLa0g4DC3t-3zvgplBDYRnFllbada77Wc9Yw_original_fullsize_png.jpg"width="200"/>

$ =62 \mathrm{~g} \mathrm{~mol}^{-1} $

$w_A =\text { mass of water in } \mathrm{g} \text { as liquid solvent }, $

$i =\text { van’t-Hoff factor }=1 \text { (for ethylene glycol in water) } $

$K_f =1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

On substituting in Eq. (i), we get

$ \begin{aligned} 0-(-10) & =1.86 \times \dfrac{62 \times 1000}{62 \times w_A} \times 1 \\ \Rightarrow \quad & w_A=\dfrac{1.86 \times 62 \times 1000}{10 \times 62}=186 \mathrm{~g} \end{aligned} $

So, amount of water separated as ice (solid solvent)

$ =250-w_A=(250-186) \mathrm{g}=64 \mathrm{~g} $