Solutions and Colligative Properties - Result Question 15

16. Liquids $A$ and $B$ form ideal solution over the entire range of composition. At temperature $T$, equimolar binary solution of liquids $A$ and $B$ has vapour pressure $45$ torr. At the same temperature, a new solution of $A$ and $B$ having mole fractions $x _A$ and $x _B$, respectively, has vapour pressure of $22.5$ torr. The value of $x _A / x _B$ in the new solution is _______.

(Given that the vapour pressure of pure liquid $A$ is $20$ Torr at temperature $T$ )

(2018 Adv. Paper-1)

Show Answer

Answer:

Correct Answer: 16. $(19)$

Solution:

Key Idea: Use the formula

$ p _{\text {Total }}=p _A^{\circ} \times \chi _A+p _B^{\circ} \times \chi _B $

and for equimolar solutions $\chi _A=\chi _B=\frac{1}{2}$

Given, $p _{\text {Total }}=45$ torr for equimolar solution

$ p _A^{\circ}=20 \text { torr } $

So, $\quad 45=p _A^{\circ} \times \frac{1}{2}+p _B^{\circ} \times \frac{1}{2}=\frac{1}{2}\left(p _A^{\circ}+p _B^{\circ}\right)$

or $p _A^{\circ}+p _B^{\circ}=90$ torr $\quad$…..(i)

But we know $p _A^{\circ}=20$ torr

$ \text { so, } \quad p _B^{\circ}=90-20=70 \text { torr } $ (From Eq. (i))

Now, for the new solution from the same formula

Given, $p_{\text {Total }}=22.5$ torr

So, $22.5=20 \chi_A+70\left(1-\chi_A\right)$ $\quad \left(\operatorname{As} \chi_A+\chi_B=1\right)$

or $22.5=70-50 \chi_A$

So, $ \chi_A=\frac{70-22.5}{50}=0.95 $

Thus $ \chi_B=1-0.95=0.05 \quad$ (as $\left.\chi_A+\chi_B=1\right)$

Hence, the ratio

$ \frac{\chi_A}{\chi_B}=\frac{0.95}{0.05}=19 $