Solutions and Colligative Properties - Result Question 16-1

16. For a dilute solution containing $2.5$ g of a non-volatile non-electrolyte solute in $100$ g of water, the elevation in boiling point at $1$ atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure ( mm of Hg ) of the solution is (take $K_b=0.76$ $\mathrm{K} $ $\mathrm{kg}$ $ \mathrm{mol}^{-1}$ ).

(2012)

(a) $724$

(b) $740$

(c) $736$

(d) $ 718$

Show Answer

Answer:

Correct Answer: 16. (a)

Solution:

The elevation in boiling point is

$ \Delta T_b=K_b \cdot m: m=\text { molality }=\frac{n_2}{w_1} \times 1000 $

$\left[n_2=\right.$ Number of moles of solute, $w_1=$ Weight of solvent in gram]

$ \begin{array}{ll} \Rightarrow & 2=0.76 \times \frac{n_2}{100} \times 1000 \\ \Rightarrow & n_2=\frac{5}{19} \end{array} $

Also, from Raoult’s law of lowering of vapour pressure :

$\frac{-\Delta p}{p^{\circ}} =x_2=\frac{n_2}{n_1+n_2} \approx \frac{n_2}{n_1} \quad\left[\because n_1 \gg n_2\right]$

$\Rightarrow \quad-\Delta p =760 \times \frac{5}{19} \times \frac{18}{100}=36 $ $\mathrm{mm} \text { of } \mathrm{Hg}$

$\Rightarrow \quad p =760-36=724 $ $\mathrm{mm} \text { of } \mathrm{Hg} $