Solutions and Colligative Properties - Result Question 28-1

28. $75.2$ g of $\mathrm{C}_6 \mathrm{H}_5 \mathrm{OH}$ (phenol) is dissolved in a solvent of $K_f=14$. If the depression in freezing point is $7$ K , then find the percentage of phenol that dimerises.

(2006, 2M)

Show Answer

Answer:

Correct Answer: 28. $(75%)$

Solution:

$ \begin{aligned} & \text { Molar mass of solute }\left(M_B\right)=\dfrac{1000 \times K_f \times W_B}{W_A \times \Delta T_f} \\ & \Rightarrow \quad M_B=\dfrac{1000 \times 14 \times 75.2}{1000 \times 7} \\ & M_B=150.4 \mathrm{~g} \text { per mol } \\ & \end{aligned} $

Actual molar mass of phenol $=94 \mathrm{~g} / \mathrm{mol}$

Now, van’t Hoff factor, $i=\dfrac{\text { Calculated molar mass }}{\text { Observed molar mass }}$

$\therefore \quad i=\dfrac{94}{150.4}=0.625$

Dimerisation of phenol can be shown as :

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/snip_images_4nLc-Yqfj8mxV0MKOP7O8cg6h2A-VjCSkLcvqpu359M_original_fullsize_png.jpg"width="300"/>

Total number of moles at equilibrium, $i=1-\alpha+\dfrac{\alpha}{2}$

$ i=1-\dfrac{\alpha}{2} $

But $i=0.625$, thus,

$ \begin{aligned} 0.625 & =1-\dfrac{\alpha}{2} \\ \dfrac{\alpha}{2} & =1-0.625 \\ \alpha & =0.75 \end{aligned} $

Thus, the percentage of phenol that dimerises is $75 %$.