Solutions and Colligative Properties - Result Question 5-2

5. The osmotic pressure of a dilute solution of an ionic compound $X Y$ in water is four times that of a solution of $0.01$ $\mathrm{M} $ $\mathrm{BaCl}_2$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $X Y$ (in mol $\mathrm{L}^{-1}$ ) in solution is

(2019 Main, 9 April I)

(a) $4 \times 10^{-2}$

(b) $16 \times 10^{-4}$

(c) $4 \times 10^{-4}$

(d) $6 \times 10^{-2}$

Show Answer

Answer:

Correct Answer: 5. (d)

Solution:

Key Idea: Osmotic pressure is proportional to the molarity (C) of the solution at a given temperature, $\pi=C R T$

(Given)

$\text { Concentration of } \mathrm{BaCl}_2 =0.01 \mathrm{M} $

$\pi_{X Y} =4 \pi_{\mathrm{BaCl}_2} $

$i \times C R T =4 \times i \times C R T\quad$ ……(i)

For the calculation of $i$,

$ X Y \longrightarrow X^{+}+Y^{-} $ (Here, $i=2$ )

$ \mathrm{BaCl}_2 \longrightarrow \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$ (Here, $i=3$ )

Putting the values of $i$ in (i)

$ \begin{aligned} 2 \times[X Y] & =4 \times 3 \times\left[\mathrm{BaCl}_2\right] \\ 2 \times[X Y] & =12 \times 0.01 \\ {[X Y] } & =\frac{12 \times 0.01}{2} \end{aligned} $

So, the concentration of $X Y=0.06 \mathrm{~mol} \mathrm{~L}^{-1}$

$ =6 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} $