Solutions and Colligative Properties - Result Question 9-1

9. The freezing point of a diluted milk sample is found to be $-0.2^{\circ} \mathrm{C}$, while it should have been $-0.5^{\circ} \mathrm{C}$ for pure milk. How much water has been added to pure milk to make the diluted sample?

(2019 Main, 11 Jan I)

(a) $2$ cups of water to $3$ cups of pure milk

(b) $1$ cup of water to $3$ cups of pure milk

(c) $3$ cups of water to $2$ cups of pure milk

(d) $1$ cup of water to $2$ cups of pure milk

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

We know that,

Depression in freezing points $\left(\Delta T_f\right)$

$ \begin{aligned} T^{\circ}{ }f-T_f=K_f & \times m \times i \\ \text { where, } \quad K_f & =\text { molal depression constant } \\ m & =\text { molality }=\dfrac{w{\text {solute }} \times 1000}{M_{\text {solute }} \times w_{\text {solvent (in g) }}} \\ i & =\text { van’t Hoff factor } \end{aligned} $

For diluted milk

$ \begin{gathered} \Delta T_{f_1}=K_f \times m_1 \times i \\ \Rightarrow 0-(0.2) \Rightarrow 0.2=K_f \times \dfrac{w_{\text {milk }} \times 1000}{M_{\text {milk }} \times w_1\left(\mathrm{H}_2 \mathrm{O}\right)} \times 1 \end{gathered} $

For pure milk

$\Delta T_{f_2}=K_f \times m_2 \times i $

$\Rightarrow 0-(-0.5)=0.5=K_f \times \dfrac{w_{\text {milk }} \times 1000}{M_{\text {milk }} \times w_2\left(\mathrm{H}_2 \mathrm{O}\right)} \times 1 $

$\text { So, } \dfrac{0.2}{0.5}=\dfrac{K_f}{K_f} \times \dfrac{w_{\text {milk }} \times 1000}{M_{\text {milk }} \times w_1\left(\mathrm{H}2 \mathrm{O}\right)} \times \dfrac{M{\text {milk }} \times w_2\left(\mathrm{H}2 \mathrm{O}\right)}{w{\text {milk }} \times 1000}=\dfrac{w_2\left(\mathrm{H}_2 \mathrm{O}\right)}{w_1\left(\mathrm{H}_2 \mathrm{O}\right)} $

$\Rightarrow \dfrac{\left.w_2\left(\mathrm{H}_2 \mathrm{O}\right) \text { (in pure milk }\right)}{w_1\left(\mathrm{H}_2 \mathrm{O}\right) \text { (in diluted milk) }}=\dfrac{2}{5}$

i.e. $3$ cups of water has to be added to $2$ cups of pure milk.