States of Matter - Result Question 78

78. An LPG (liquefied petroleum gas) cylinder weighs $14.8 kg$ when empty. When full it weighs $29.0 kg$ and shows a pressure of $2.5 \hspace {1mm} atm$. In the course of use at $27^{\circ} C$, the weight of the full cylinder reduces to $23.2 kg$. Find out the volume of the gas in cubic metres used up at the normal usage conditions, and the final pressure inside the cylinder. Assume LPG to the $n$-butane with normal boiling point of $0^{\circ} C$.

(1994, 3M)

Show Answer

Answer:

Correct Answer: 78. $2.46 \hspace {1mm} m^3$

Solution:

Weight of butane gas in filled cylinder $=29-14.8 kg$

$ =14.2 kg $

$\Rightarrow$ During the course of use, weight of cylinder reduces to $23.2 kg$

$\Rightarrow$ Weight of butane gas remaining now

$ =23.2-14.8=8.4 kg $

Also, during use, $V$ (cylinder) and $T$ remains same.

Therefore, $\quad \dfrac{p _1}{p _2}=\dfrac{n _1}{n _2}$

$ \Rightarrow \quad p _2=\left(\dfrac{n _2}{n _1}\right) p _1=\left(\dfrac{8.4}{14.2}\right) \times 2.5 \quad\left[\text { Here, } \dfrac{n _2}{n _1}=\dfrac{w _2}{w _1}\right] $

$ =1.48 \hspace {1mm} atm $

Also, pressure of gas outside the cylinder is $1.0 \hspace {1mm} atm$.

$\Rightarrow \quad p V =n R T $

$\Rightarrow \quad V =\dfrac{n R T}{p}=\dfrac{(14.2-8.4) \times 10^{3}}{58} \times \dfrac{0.082 \times 30}{1} L $

$ =2460 L=2.46 m^{3}$