Area Ques 14

  1. The triangle formed by the tangent to the curve $f(x)=x^2+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 sq units, then the value of $b$ is

(2001, 2M)

(a) $-1$

(b) $3$

(c) $-3$

(d) $1$

Show Answer

Answer:

Correct Answer: 14.(c)

Solution: (c) Let $y=f(x)=x^2+b x-b$

The equation of the tangent at $P(1,1)$

to the curve $2 y=2 x^2+2 b x-2 b$ is

$ \begin{aligned} y+1 & =2 x-1+b(x+1)-2 b \\ \Rightarrow \quad y & =(2+b) x-(1+b) \end{aligned} $

Its meet the coordinate axes at

$ x_A=\frac{1+b}{2+b} \text { and } y_B=-(1+b) $

$\therefore \quad$ Area of $\triangle O A B=\frac{1}{2} O A \times O B$

$ =\quad -\frac{1}{2} \times \frac{(1+b)^2}{(2+b)}=2 $

$\Rightarrow \quad (1+b)^2+4(2+b)=0 \Rightarrow b^2+6 b+9=0$

$\Rightarrow \quad(b+3)^2=0 \Rightarrow b=-3$



Table of Contents