Area Ques 17

Question

  1. If the area (in sq units) bounded by the parabola $y^{2}=4 \lambda x$ and the line $y=\lambda x, \lambda>0$, is $\frac{1}{9}$, then $\lambda$ is equal to

(2019 Main, 12 April II)

(a) $2 \sqrt{6}$

(b) $48$

(c) $24$

(d) $4 \sqrt{3}$

Show Answer

Answer:

Correct Answer: 17.(c)

Solution:

Formula:

Standard Areas:

  1. Given, equation of curves are

$ \begin{aligned} y^{2} & =4 \lambda x \quad …….(i) \\ y & =\lambda x \quad …….(ii) \\ \lambda & >0 \end{aligned} $

Area bounded by above two curve is, as per figure

the intersection point $A$ we will get on the solving Eqs. (i) and (ii), we get

$ \begin{aligned} & \lambda^{2} x^{2}=4 \lambda x \\ & \Rightarrow \quad x=\frac{4}{\lambda} \text {, so } y=4 \text {. } \\ & \text { So, } \quad A (\frac{4}{\lambda}, 4) \end{aligned} $

Now, required area is

$ \begin{aligned} & =\int _{0}^{4 / \lambda}(2 \sqrt{\lambda x}-\lambda x) d x \\ & =2 \sqrt{\lambda} [\frac{x^{3 / 2}}{\frac{3}{2}}]_0^{4/\lambda}- \lambda [\frac{x^2}{2}]_0^{4/\lambda}\\ & =\frac{4}{3} \sqrt{\lambda} \frac{4 \sqrt{4}}{\lambda \sqrt{\lambda}}-\frac{\lambda}{2} (\frac{4}{\lambda})^{2} \\ & =\frac{32}{3 \lambda}-\frac{8}{\lambda}=\frac{32-24}{3 \lambda}=\frac{8}{3 \lambda} \end{aligned} $

It is given that area $=\frac{1}{9}$

$\Rightarrow \quad \frac{8}{\lambda}=\frac{1}{9}$

$\lambda = 24$



Table of Contents