Area Ques 20

Question

  1. The area of the region $\mathrm{A}=\{(x, y) ; 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq 1\}$ in sq. units, is

(2019 Main, 9 Jan II)

(a) $2$

(b) $\frac{4}{3}$

(c) $\frac{1}{3}$

(d) $\frac{2}{3}$

Show Answer

Answer:

Correct Answer: 20.(a)

Solution:

Formula:

Area under curves Formula :

  1. We have,

$A=\{(x, y): 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq 1\}$

When $x \geq 0$, then $0 \leq y \leq x^{2}+1$

and when $x<0$, then $0 \leq y \leq-x^{2}+1$

Now, the required region is the shaded region.

$\left[\because y=x^{2}+1 \Rightarrow x^{2}=(y-1)\right.$, parabola with vertex $(0,1)$ and $y=-x^{2}+1 \Rightarrow x^{2}=-(y-1)$,

parabola with vertex $(0,1)$ but open downward]

We need to calculate the shaded area, which is equal to

$ \begin{aligned} \int _{-1}^{0}\left(-x^{2}+1\right) & d x+\int _{0}^{1}\left(x^{2}+1\right) d x \\ & =[-\frac{x^{3}}{3}+x] _{-1}^{0}+[\frac{x^{3}}{3}+x] _{0}^{1} \\ & =(0-[-\frac{(-1)^{3}}{3}+(-1)])+([\frac{1}{3}+1]-0) \\ & =(-\frac{1}{3}-1)+\frac{4}{3} \\ & =\frac{2}{3}+\frac{4}{3}=2 \end{aligned} $



Table of Contents