Area Ques 26

Question

  1. The area (in sq units) of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is

(2014 Main)

(a) $\frac{\pi}{2}+\frac{4}{3}$

(b) $\frac{\pi}{2}-\frac{4}{3}$

(c) $\frac{\pi}{2}-\frac{2}{3}$

(d) $\frac{\pi}{2}+\frac{2}{3}$

Show Answer

Answer:

Correct Answer: 26.(a)

Solution:

Formula:

Area under curves Formula :

  1. Given, $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$

Required area $=\frac{1}{2} \pi r^{2}+2 \int _{0}^{1}\left(1-y^{2}\right) d y$

$ \begin{aligned} & =\frac{1}{2} \pi(1)^{2}+2 \quad (y-{\frac{y^{3}}{3}}) _{0}^{1} \\ & =(\frac{\pi}{2}+\frac{4}{3}) \text { sq units } \end{aligned} $



Table of Contents