Area Ques 29

Question

  1. The area (in sq units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, X$-axis and lying in the first quadrant, is

(2013 Main, 03)

(a) $ 9$

(b) $ 6$

(c) $18$

(d) $\frac{27}{4}$

Show Answer

Answer:

Correct Answer: 29.(a)

Solution:

Formula:

Area under curves Formula :

  1. Given curves are $y=\sqrt{x}$ $\quad$ …….(i)

and $2 y-x+3=0$ $\quad$ …….(ii)

On solving Eqs. (i) and (ii), we get

$2 \sqrt{x}-(\sqrt{x})^{2}+3 =0 $

$\Rightarrow \quad (\sqrt{x})^{2}-2 \sqrt{x}-3 =0 $

$\Rightarrow \quad (\sqrt{x}-3)(\sqrt{x}+1) =0 \quad \Rightarrow \quad \sqrt{x}=3 $

$\therefore \quad y =3 $

Hence, required area

$ \begin{aligned} & =\int _{0}^{3}\left(x _{2}-x _{1}\right) d y=\int _{0}^{3}\left\{(2 y+3)-y^{2}\right\} d y \\ & =[y^{2}+3 y-{\frac{y^{3}}{3}}] _{0}^{3}=9+9-9=9 \text { sq units } \end{aligned} $



Table of Contents