Area Ques 33

Question

  1. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is

(2005, 1M)

(a) $\frac{1}{3}$ sq unit

(b) $\frac{2}{3}$ sq unit

(c) $\frac{1}{4}$ sq unit

(d) $\frac{1}{5}$ sq unit

Show Answer

Answer:

Correct Answer: 33.(a)

Solution:

Formula:

Area under curves Formula :

  1. The curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=1 / 4$ are shown as

where, points of intersection are

$ (x-1)^{2}=\frac{1}{4} \quad \Rightarrow \quad x=\frac{1}{2} \text { and }(x+1)^{2}=\frac{1}{4} \Rightarrow x=-\frac{1}{2} $

i.e.

$ Q(\frac{1}{2}, \frac{1}{4}) \quad \text { and } \quad R \quad-(\frac{1}{2}, \frac{1}{4}) $

$\therefore \quad$ Required area $=2 \int _{0}^{1 / 2}[(x-1)^{2}-\frac{1}{4}] d x$

$ \begin{aligned} & =2 [\frac{(x-1)^{3}}{3}-\frac{1}{4} x] _{0}^{1 / 2} \\ & =2[-\frac{1}{8 \cdot 3}-\frac{1}{8}-(-\frac{1}{3}-0)] \quad=\frac{8}{24}=\frac{1}{3} \text { sq unit } \end{aligned} $



Table of Contents