Area Ques 41

Question

  1. For which of the following values of $m$, is the area of the region bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equals $\frac{9}{2}$ ?

$(1999,3 \mathrm{M})$

(a) $-4$

(b) $-2$

(c) $ 2$

(d) $ 4$

Show Answer

Answer:

Correct Answer: 41.(b,d)

Solution:

Formula:

Area under curves Formula :

  1. Case I When $m=0$

In this case, $\quad y=x-x^{2}$ $\quad$ …….(i)

and $ \quad y=0$ $\quad$ …….(ii)

are two given curves, $y>0$ is total region above $X$-axis.

Therefore, area between $y=x-x^{2}$ and $y=0$

is area between $y=x-x^{2}$ and above the $X$-axis

Hence, no solution exists.

Case II When $m<0$

In this case, area between $y=x-x^{2}$ and $y=m x$ is $O A B C O$ and points of intersection are $(0,0)$ and $\{1-m, m(1-m)\}$.

$\therefore \quad$ Area of curve $O A B C O=\int _{0}^{1-m}\left[x-x^{2}-m x\right] d x$

$ =[(1-m) \frac{x^{2}}{2}-{\frac{x^{3}}{3}}]^{1-m} $

$ =\frac{1}{2}(1-m)^{3}-\frac{1}{3}(1-m)^{3}=\frac{1}{6}(1-m)^{3} $

$\therefore \quad \frac{1}{6}(1-m)^{3} =\frac{9}{2} $

$\Rightarrow \quad(1-m)^{3} =27 $

$\Rightarrow \quad 1-m =3 $

$\Rightarrow \quad m =-2$

Case III When $m>0$

In this case, $y=m x$ and $y=x-x^{2}$ intersect in $(0,0)$ and $\{(1-m), m(1-m)\}$ as shown in figure

$\therefore$ Area of shaded region $=\int _{1-m}^{0}\left(x-x^{2}-m x\right) d x$

$=[(1-m) \frac{x^{2}}{2}-{\frac{x^{3}}{3}}]^{0} $

$=-\frac{1}{2}(1-m)(1-m)^{2}+\frac{1}{3}(1-m)^{3} $

$=-\frac{1}{6}(1-m)^{3} $

$\Rightarrow \quad \frac{9}{2} =-\frac{1}{6}(1-m)^{3} $

$\Rightarrow \quad(1-m)^{3} =-27 $

$\Rightarrow \quad(1-m) =-3 $

$\Rightarrow \quad m =3+1=4$

[given]

Therefore, (b) and (d) are the answers.



Table of Contents