Area Ques 47

Question

  1. Let $C _{1}$ and $C _{2}$ be the graphs of functions $y=x^{2}$ and $y=2 x, 0 \leq x \leq 1$, respectively. Let $C _{3}$ be the graph of a function $y=f(x), 0 \leq x \leq 1, f(0)=0$. For a point $P$ on $C _{1}$, let the lines through $P$, parallel to the axes, meet $C _{2}$ and $C _{3}$ at $Q$ and $R$ respectively (see figure). If for every position of $P\left(\right.$ on $\left.C _{1}\right)$ the areas of the shaded regions $O P Q$ and $O R P$ are equal, then determine $f(x)$.

$(1998,8 \mathrm{M})$

Show Answer

Answer:

Correct Answer: 47.$( f(x)=x^{3}-x^{2}, 0 \leq x \leq 1)$

Solution:

Formula:

Area under curves Formula :

  1. Refer to the figure given in the question. Let the coordinates of $P$ be $\left(x, x^{2}\right)$, where $0 \leq x \leq 1$.

For the area $(O P R O)$,

Upper boundary: $y=x^{2}$ and

lower boundary : $y=f(x)$

Lower limit of $x: 0$

Upper limit of $x: x$

$\therefore$ Area $(O P R O)=\int _{0}^{x} t^{2} d t-\int _{0}^{x} f(t) d t$

$ \begin{aligned} & =[{\frac{t^{3}}{3}}] _{0}^{x}-\int _{0}^{x} f(t) d t \\ & =\frac{x^{3}}{3}-\int _{0}^{x} f(t) d t \end{aligned} $

For the area $(O P Q O)$,

The upper curve : $x=\sqrt{y}$

and the lower curve : $x=y / 2$

Lower limit of $y: 0$

and upper limit of $y: x^{2}$

$ \begin{aligned} \therefore \text { Area }(O P Q O) & =\int _{0}^{x^{2}} \sqrt{t} d t-\int _{0}^{x^{2}} \frac{t}{2} d t \\ & =\frac{2}{3}\left[t^{3 / 2}\right] _{0}^{x^{2}}-\frac{1}{4}\left[t^{2}\right] _{0}^{x^{2}} \\ & =\frac{2}{3} x^{3}-\frac{x^{4}}{4} \end{aligned} $

According to the given condition,

$ \frac{x^{3}}{3}-\int _{0}^{x} f(t) d t=\frac{2}{3} x^{3}-\frac{x^{4}}{4} $

On differentiating both sides w.r.t. $x$, we get

$ x^{2}-f(x) \cdot 1=2 x^{2}-x^{3} $

$ \Rightarrow \quad f(x)=x^{3}-x^{2}, 0 \leq x \leq 1 $



Table of Contents