Area Ques 50

Question

  1. The area (in sq units) of the region $A=\{(x, y): \frac{y^{2}}{2} \leq x \leq y+4\}$ is

(2019 Main, 9 April II)

(a) $30$

(b) $\frac{53}{3}$

(c) $16$

(d) $18$

Show Answer

Answer:

Correct Answer: 50.(d)

Solution:

Formula:

Area under curves Formula :

  1. Given region $A=\{(x, y): \frac{y^{2}}{2} \leq x \leq y+4\}$

$ \therefore \quad \frac{y^{2}}{2}=x $

$ \Rightarrow \quad y^{2}=2 x $ $\quad$ …….(i)

and $x=y+4 \Rightarrow y=x-4$ $\quad$ …….(ii)

Graphical representation of $A$ is

On substituting $y=x-4$ from Eq. (ii) to Eq. (i), we get

$ \begin{array}{rlrl} & & (x-4)^{2} & =2 x \\ \Rightarrow & & x^{2}-8 x+16 & =2 x \\ \Rightarrow & & x^{2}-10 x+16 & =0 \\ \Rightarrow & & (x-2)(x-8) & =0 \\ \Rightarrow & & x & =2,8 \\ \therefore & & y & =-2,4 \end{array} $

[from Eq. (ii)]

So, the point of intersection of Eqs. (i) and

(ii) are $P(2,-2)$ and $Q(8,4)$.

Now, the area enclosed by the region $A$

$ \begin{aligned} & =\int _{-2}^{4}[(y+4)-\frac{y^{2}}{2}] d y=[\frac{y^{2}}{2}+4 y-{\frac{y^{3}}{6}}] _{-2}^{4} \\ & = (\frac{16}{2}+16-\frac{64}{6}) - (\frac{4}{2}-8+\frac{8}{6}) \\ & =8+16-\frac{32}{3}-2+8-\frac{4}{3} \\ & =30-12=18 \text { sq unit. } \end{aligned} $



Table of Contents