Area Ques 61

Question

  1. The area (in $\mathrm{sq}$ units) of the region $A=\left\{(x, y): x^{2} \leq y \leq x+2\right\}$ is $\quad$

(2019 Main, 9 April I)

(a) $\frac{13}{6}$

(b) $\frac{9}{2}$

(c) $\frac{31}{6}$

(d) $\frac{10}{3}$

Show Answer

Answer:

Correct Answer: 61.(b)

Solution:

Formula:

Area under curves Formula :

  1. Given region is $A=\left\{(x, y): x^{2} \leq y \leq x+2\right\}$

Now, the region is shown in the following graph

For intersecting points $A$ and $B$

$ \begin{array}{ll} \text { Taking, } & x^{2}=x+2 \Rightarrow x^{2}-x-2=0 \\ \Rightarrow & x^{2}-2 x+x-2=0 \\ \Rightarrow & x(x-2)+1(x-2)=0 \\ \Rightarrow & x=-1,2 \Rightarrow y=1,4 \end{array} $

So, $A(-1,1)$ and $B(2,4)$.

Now, shaded area $=\int _{-1}^{2}\left[(x+2)-x^{2}\right] d x$

$=(\frac{x^{2}}{2}+2 x-{\frac{x^{3}}{3}})_{-1}^{2}=(\frac{4}{2}+4-\frac{8}{3})-(\frac{1}{2}-2+\frac{1}{3})$

$=8-\frac{1}{2}-\frac{9}{3}=8-\frac{1}{2}-3=5-\frac{1}{2}=\frac{9}{2}$ sq units



Table of Contents