Area Ques 65

Question

  1. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.
Show Answer

Answer:

Correct Answer: 65.$(\frac{9}{8} \text { sq units })$

Solution:

Formula:

Area under curves Formula :

  1. The point of intersection of the curves $x^{2}=4 y$ and $x=4 y-2$ could be sketched are $x=-1$ and $x=2$.

$\therefore$ Required area

$ \begin{aligned} & =\int _{-1}^{2} [(\frac{x+2}{4})-(\frac{x^{2}}{4})] d x \\ & =\frac{1}{4} [\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}] _{-1}^2 \\ & =\frac{1}{4} [(2+4-\frac{8}{3})-(\frac{1}{2}-2+\frac{1}{3})] \\ & =\frac{1}{4} [\frac{10}{3}-(\frac{-7}{6})]=\frac{1}{4} \cdot \frac{9}{2}=\frac{9}{8} \text { sq units } \end{aligned} $



Table of Contents