Area Ques 68

Question

  1. The tangent to the parabola $y^{2}=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point

(a) $(\frac{1}{4}, \frac{3}{4})$

(b) $(\frac{3}{4}, \frac{7}{4})$

(c) $(-\frac{1}{3}, \frac{4}{3})$

(d) $(-\frac{1}{4}, \frac{1}{2})$

Show Answer

Answer:

Correct Answer: 68.(b)

Solution:

Formula:

Area under curves Formula :

  1. Given equations of the parabola $y^{2}=4 x$ and circle $\quad$ …….(i)

$ x^{2}+y^{2}=5 $ $\quad$ …….(ii)

So, for point of intersection of curves (i) and (ii), put $y^{2}=4 x$ in Eq. (ii), we get

$ \begin{array}{lc} & \\ \Rightarrow & x^{2}+4 x-5=0 \\ \Rightarrow & x^2 + 5x -x -5=0 \\ \Rightarrow & (x-1)(x+5)=0 \\ \Rightarrow & x=1,-5 \end{array} $

For first quadrant $x=1$, so $y=2$.

Now, equation of tangent of parabola (i) at point $(1,2)$ is $T=0$

$\Rightarrow \quad 2 y=2(x+1)$

$\Rightarrow \quad x-y+1=0$

The point $(\frac{3}{4}, \frac{7}{4})$ satisfies, the equation of line

$ x-y+1=0 $



Table of Contents