Area Ques 9

  1. The common tangents to the circle $x^2+y^2=2$ and the parabola $y^2=8 x$ touch the circle at the points $P, Q$ and the parabola at the points $R, S$. Then, the area (in $s q$ units) of the quadrilateral $P Q R S$ is

(2014 Adv.)

(a) $3$

(b) $6$

(c) $9$

(d) $15$

Show Answer

Answer:

Correct Answer: 9.(d)

Solution: (d) PLAN

(i) $y=m x+a / m$ is an equation of tangent to the parabola $y^2=4 a x$.

(ii) A line is a tangent to circle, if distance of line from centre is equal to the radius of circle.

(iii) Equation of chord drawn from exterior point $\left(x_1, y_1\right)$ to a circle/parabola is given by $T=0$.

(iv) Area of trapezium $=\frac{1}{2}$ (Sum of parallel sides)

Let equation of tangent to parabola be $y=m x+\frac{2}{m}$

It also touches the circle $x^2+y^2=2$.

$\therefore \quad \left|\frac{2}{m \sqrt{1+m^2}}\right|=\sqrt{2}$

$\Rightarrow \quad m^4+m^2=2 \Rightarrow m^4+m^2-2=0$

$\Rightarrow \quad\left(m^2-1\right)\left(m^2+2\right)=0$

$\Rightarrow \quad m= \pm 1, m^2=-2 \quad$ [rejected $\left.m^2=-2\right]$

So, tangents are $y=x+2, y=-x-2$.

They, intersect at $(-2,0)$.

Equation of chord $P Q$ is $-2 x=2 \Rightarrow x=-1$

Equation of chord $R S$ is $O=4(x-2) \Rightarrow x=2$

$\therefore \quad$ Coordinates of $P, Q, R, S$ are

$P(-1,1), Q(-1,-1), R(2,4), S(2,-4)$

$\therefore \quad$ Area of quadrilateral $=\frac{(2+8) \times 3}{2}=15$ sq units



Table of Contents