Complex Numbers Ques 12

The smallest positive integer $n$ for which $(\frac{1+i}{1-i})^n=1$, is

(a) $8$

(b) $16$

(c) $12$

(d) None of these

$(1980,2 M)$

Show Answer

Answer:

Correct Answer: 12.(d)

Solution:

  1. Since, $(\frac{1+i}{1-i})^{n}=1 \Rightarrow (\frac{1+i}{1-i} \times \frac{1+i}{1+i})^{n}=1$

$ \begin{aligned} \Rightarrow & & (\frac{2 i^{n}}{2}) & =1 \\ \Rightarrow & & i^{n} & =1 \end{aligned} $

The smallest positive integer $n$ for which $i^{n}=1$ is $4$ .

$ \therefore \quad n=4 $



Table of Contents