Complex Numbers Ques 32

Let $z$ be any point in $A \cap B \cap C$ and let $w$ be any point satisfying $|w-2-i|<3$. Then, $|z|-|w|+3$ lies between

(a) $-6$ and $3$

(b) $-3$ and $6$

(c) $-6$ and $6$

(d) $-3$ and $9$

Show Answer

Answer:

Correct Answer: 32.(d)

Solution:

Formula:

Equation of circle:

  1. Since,

$ |w-(2+i)|<3 \Rightarrow|w|-|2+i|<3 $

$ \begin{array}{ll} \Rightarrow & -3+\sqrt{5}<|w|<3+\sqrt{5} \\ \Rightarrow & -3-\sqrt{5}<-|w|<3-\sqrt{5} \end{array} $

Also, $\quad|z-(2+i)|=3$

$ \begin{array}{ll} \Rightarrow & -3+\sqrt{5} \leq|z| \leq 3+\sqrt{5} \\ \therefore & -3<|z|-|w|+3<9 \end{array} $



Table of Contents