Complex Numbers Ques 82
For any integer $k$, let $\alpha _k=\cos (\frac{k \pi}{7})+i \sin (\frac{k \pi}{7})$, where $i=\sqrt{-1}$. The value of the expression
$ \frac{\sum _{k=1}^{12}\left|\alpha _{k+1}-\alpha _k\right|}{\sum _{k=1}^{3}\left|\alpha _{4 k-1}-\alpha _{4 k-2}\right|} \text { is } $
(2016 Adv.)
Show Answer
Answer:
Correct Answer: 82.(4)
Solution:
Formula:
- Given, $\alpha _k=\cos (\frac{k \pi}{7})+i \sin (\frac{k \pi}{7})$
$ =\cos (\frac{2 k \pi}{14})+i \sin (\frac{2 k \pi}{14}) $
$\therefore \alpha _k$ are vertices of regular polygon having 14 sides.
Let the side length of regular polygon be $a$.
$\therefore\left|\alpha _{k+1}-\alpha _k\right|=$ length of a side of the regular polygon
$ =a $
and $\left|\alpha _{4 k-1}-\alpha _{4 k-2}\right|=$ length of a side of the regular polygon
$ \therefore \quad \frac{\sum _{k=1}^{12}\left|\alpha _{k+1}-\alpha _k\right|}{\sum _{k=1}^{3}\left|\alpha _{4 k-1}-\alpha _{4 k-2}\right|}=\frac{12(a)}{3(a)}=4 $