Differential Equations Ques 1
- Match the conditions/expressions in Column I with statements in Column II.
Column I | Column II | ||
---|---|---|---|
A. | $\int_0^{\pi / 2}(\sin x)^{\cos x}\left\{\cos x \cot x-\log (\sin x)^{\sin x}\right\} d x$ | p. | 1 |
B. | Area bounded by $-4 y^2=x$ and $x-1=-5 y^2$ | q. | 0 |
C. | The angle of intersection of curves $y=3^{x-1} \log x$ and $y=x^x-1$ is | r. | $3 e^{y / 2}$ |
D. | If $\frac{d y}{d x}=\frac{2}{x+y}$ passing through $(1,0)$, then $(x+y+2)$ is | s. | $\frac{4}{3}$ |
(2006, 6M)
Show Answer
Answer:
Correct Answer: 1.$( A \rightarrow p; B \rightarrow s; C \rightarrow q; D \rightarrow r)$