Functions Ques 31

Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ be the minimum value of $f(x)$. As $b$ varies, the range of $m(b)$ is

(2001, 1M)

(a) $[0,1]$

(b) $[0, \frac{1}{2}]$

(c) $[\frac{1}{2}, 1]$

(d) $[0,1]$

Show Answer

Answer:

Correct Answer: 31.(d)

Solution:

Formula:

Domain and Range:

  1. Given, $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$

$ =\left(1+b^{2}\right)( x+{\frac{b}{1+b^{2}}})^{2}+1-\frac{b^{2}}{1+b^{2}} $

$m(b)=$ minimum value of $f(x)=\frac{1}{1+b^{2}}$ is positive

and $m(b)$ varies from 1 to 0 , so range $=[0,1]$



Table of Contents