Functions Ques 32
The domain of definition of $f(x)=\frac{\log _2(x+3)}{x^{2}+3 x+2}$ is
(2001, 1M)
(a) $R /\{-1,-2\}$
(b) $(-2, \infty)$
(c) $R /\{-1,-2,-3\}$
(d) $(-3, \infty) /\{-1,-2\}$
Show Answer
Answer:
Correct Answer: 32.(d)
Solution:
- Given, $f(x)=\frac{\log _2(x+3)}{\left(x^{2}+3 x+2\right)}=\frac{\log _2(x+3)}{(x+1)(x+2)}$
For numerator, $x+3>0$
$\Rightarrow \quad x>-3$ $\quad$ …….(i)
and for denominator, $(x+1)(x+2) \neq 0$
$ \Rightarrow \quad x \neq-1,-2 $ $\quad$ …….(ii)
From Eqs. (i) and (ii),
Domain is $(-3, \infty) /\{-1,-2\}$