Functions Ques 37
If $f(x)=\cos (\log x)$, then $f(x) \cdot f(y)-\frac{1}{2}[ f (\frac{x}{y})+f(x y)]$ has the value
(1983, 1M)
(a) -1
(b) $\frac{1}{2}$
(c) -2
(d) None of these
Show Answer
Answer:
Correct Answer: 37.(d)
Solution:
Formula:
- Given, $f(x)=\cos (\log x)$
$\therefore f(x) \cdot f(y)-\frac{1}{2} [f \frac{x}{y}+f(x y)]$
$=\cos (\log x) \cdot \cos (\log y)-\frac{1}{2}[\cos (\log x-\log y)$ $+\cos (\log x+\log y)]$
$=\cos (\log x) \cdot \cos (\log y)-\frac{1}{2}[(2 \cos (\log x) \cdot \cos (\log y)]$
$=\cos (\log x) \cdot \cos (\log y)-\cos (\log x) \cdot \cos (\log y)=0$