Hyperbola Ques 11

If a directrix of a hyperbola centred at the origin and passing through the point $(4,-2 \sqrt{3})$ is $5 x=4 \sqrt{5}$ and its eccentricity is $e$, then

(2019 Main, 10 April I)

(a) $4 e^{4}-12 e^{2}-27=0$

(b) $4 e^{4}-24 e^{2}+27=0$

(c) $4 e^{4}+8 e^{2}-35=0$

(d) $4 e^{4}-24 e^{2}+35=0$

Show Answer

Answer:

Correct Answer: 11.(d)

Solution:

  1. Let the equation of hyperbola is

$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ $\quad$ …….(i)

Since, equation of given directrix is $5 x=4 \sqrt{5}$

$\text { so } 5 (\frac{a}{e}) =4 \sqrt{5} \quad\left[\because \text { equation of directrix is } x=\frac{a}{e}\right] $

$\Rightarrow \frac{a}{e} =\frac{4}{\sqrt{5}}$ $\quad$ …….(ii)

and hyperbola (i) passes through point $(4,-2 \sqrt{3})$

$ \text { so, } \quad \frac{16}{a^{2}}-\frac{12}{b^{2}}=1 $ $\quad$ …….(iii)

The eccentricity $e=\sqrt{1+\frac{b^{2}}{a^{2}}}$

$\Rightarrow e^{2}=1+\frac{b^{2}}{a^{2}} $

$\Rightarrow a^{2} e^{2}-a^{2}=b^{2} $ $\quad$ …….(iv)

From Eqs. (ii) and (iv), we get

$ \frac{16}{5} e^{4}-\frac{16}{5} e^{2}=b^{2} $ $\quad$ …….(v)

From Eqs. (ii) and (iii), we get

$ \frac{16}{\frac{16}{5} e^{2}}-\frac{12}{b^{2}}=1 \Rightarrow \frac{5}{e^{2}}-\frac{12}{b^{2}}=1$

$\Rightarrow \quad \frac{12}{b^{2}}=\frac{5}{e^{2}}-1 \Rightarrow \frac{12}{b^{2}}=\frac{5-e^{2}}{e^{2}}$

$\Rightarrow \quad b^{2}=\frac{12 e^{2}}{5-e^{2}}$ $\quad$ …….(vi)

From Eqs. (v) and (vi), we get

$ \begin{aligned} & 16 e^{4}-16 e^{2}=5 \frac{12 e^{2}}{5-e^{2}} \Rightarrow 16\left(e^{2}-1\right)\left(5-e^{2}\right)=60 \\ \Rightarrow & 4\left(5 e^{2}-e^{4}-5+e^{2}\right)=15 \\ \Rightarrow & 4 e^{4}-24 e^{2}+35=0 \end{aligned} $



Table of Contents